Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Circulation ; 149(1): 48-66, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37746718

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS: We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS: We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS: These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Miocarditis , Humanos , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Linfocitos T CD8-positivos , Miocarditis/inducido químicamente , Miocarditis/metabolismo , Receptor de Muerte Celular Programada 1 , Antígeno CTLA-4 , Ligandos , Quimiocinas/metabolismo , Macrófagos/metabolismo , ARN/metabolismo
2.
Gut ; 71(7): 1289-1301, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34261752

RESUMEN

OBJECTIVE: Fibrosis is a common feature of Crohn's disease (CD) which can involve the mesenteric fat. However, the molecular signature of this process remains unclear. Our goal was to define the transcriptional signature of mesenteric fibrosis in CD subjects and to model mesenteric fibrosis in mice to improve our understanding of CD pathogenesis. DESIGN: We performed histological and transcriptional analysis of fibrosis in CD samples. We modelled a CD-like fibrosis phenotype by performing repeated colonic biopsies in mice and analysed the model by histology, type I collagen-targeted positron emission tomography (PET) and global gene expression. We generated a gene set list of essential features of mesenteric fibrosis and compared it to mucosal biopsy datasets from inflammatory bowel disease patients to identify a refined gene set that correlated with clinical outcomes. RESULTS: Mesenteric fibrosis in CD was interconnected to areas of fibrosis in all layers of the intestine, defined as penetrating fibrosis. We found a transcriptional signature of differentially expressed genes enriched in areas of the mesenteric fat of CD subjects with high levels of fibrosis. Mice subjected to repeated colonic biopsies showed penetrating fibrosis as shown by histology, PET imaging and transcriptional analysis. Finally, we composed a composite 24-gene set list that was linked to inflammatory fibroblasts and correlated with treatment response. CONCLUSION: We linked histopathological and molecular features of CD penetrating fibrosis to a mouse model of repeated biopsy injuries. This experimental system provides an innovative approach for functional investigations of underlying profibrotic mechanisms and therapeutic concepts in CD.


Asunto(s)
Enfermedad de Crohn , Animales , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/genética , Fibrosis , Humanos , Intestinos/patología , Mesenterio/patología , Ratones , Inhibidores del Factor de Necrosis Tumoral
3.
Arterioscler Thromb Vasc Biol ; 41(2): 822-836, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33327748

RESUMEN

OBJECTIVE: vMIP-II (viral macrophage inflammatory protein 2)/vCCL2 (viral chemotactic cytokine ligand 2) binds to multiple chemokine receptors, and vMIP-II-based positron emission tomography tracer (64Cu-DOTA-vMIP-II: vMIP-II tracer) accumulates at atherosclerotic lesions in mice. Given that it would be expected to react with multiple chemokine receptors on monocytes and macrophages, we wondered if its accumulation in atherosclerosis lesion-bearing mice might correlate with overall macrophage burden or, alternatively, the pace of monocyte recruitment. Approach and Results: We employed a mouse model of atherosclerosis regression involving adenoassociated virus 8 vector encoding murine Apoe (AAV-mApoE) treatment of Apoe-/- mice where the pace of monocyte recruitment slows before macrophage burden subsequently declines. Accumulation of 64Cu-DOTA-vMIP-II at Apoe-/- plaque sites was strong but declined with AAV-mApoE-induced decline in monocyte recruitment, before macrophage burden reduced. Monocyte depletion indicated that monocytes and macrophages themselves were not the only target of the 64Cu-DOTA-vMIP-II tracer. Using fluorescence-tagged vMIP-II tracer, competitive receptor blocking with CXCR4 antagonists, endothelial-specific Cre-mediated deletion of CXCR4, CXCR4-specific tracer 64Cu-DOTA-FC131, and CXCR4 staining during disease progression and regression, we show endothelial cell expression of CXCR4 is a key target of 64Cu-DOTA-vMIP-II imaging. Expression of CXCR4 was low in nonplaque areas but strongly detected on endothelium of progressing plaques, especially on proliferating endothelium, where vascular permeability was increased and monocyte recruitment was the strongest. CONCLUSIONS: Endothelial injury status of plaques is marked by CXCR4 expression and this injury correlates with the tendency of such plaques to recruit monocytes. Furthermore, our findings suggest positron emission tomography tracers that mark CXCR4 can be used translationally to monitor the state of plaque injury and monocyte recruitment.


Asunto(s)
Aorta Torácica/diagnóstico por imagen , Aterosclerosis/diagnóstico por imagen , Quimiocinas/administración & dosificación , Endotelio Vascular/diagnóstico por imagen , Imagen Molecular , Monocitos/metabolismo , Compuestos Organometálicos/administración & dosificación , Tomografía de Emisión de Positrones , Radiofármacos/administración & dosificación , Receptores CXCR4/metabolismo , Animales , Aorta Torácica/inmunología , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores/metabolismo , Línea Celular , Quimiocinas/farmacocinética , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Inyecciones Intravenosas , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , Monocitos/inmunología , Monocitos/patología , Compuestos Organometálicos/farmacocinética , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Radiofármacos/farmacocinética , Receptores CXCR4/genética
4.
Am J Respir Crit Care Med ; 203(1): 78-89, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673071

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis.Objectives: To phenotype patients with IPF for potential targeted therapy, we developed 64Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2+ monocytes and macrophages using positron emission tomography (PET).Methods: CCR2+ cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2+ cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and Ccr2 RNA in situ hybridization and then correlated with parallel quantitation of lung uptake by 64Cu-DOTA-ECL1i PET.Measurements and Main Results: Mouse models established that increased 64Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2+ cell infiltration associated with fibrosis (n = 72). As therapeutic models, the inhibition of fibrosis by IL-1ß blockade (n = 19) or antifibrotic pirfenidone (n = 18) reduced CCR2+ macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2+ cells concentrated in perifibrotic regions and correlated with radiotracer localization (n = 21). Human imaging revealed little lung uptake in healthy volunteers (n = 7), whereas subjects with IPF (n = 4) exhibited intensive signals in fibrotic zones.Conclusions: These findings support a role for imaging CCR2+ cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).


Asunto(s)
Biomarcadores/química , Fibrosis Pulmonar Idiopática/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Macrófagos/fisiología , Monocitos/fisiología , Receptores CCR2/química , Adulto , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Imagen Molecular , Tomografía de Emisión de Positrones
5.
Angew Chem Int Ed Engl ; 61(41): e202204576, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35979844

RESUMEN

Aptamers face challenges for use outside the ideal conditions in which they are developed. These difficulties are most palpable in vivo due to nuclease activities, rapid clearance, and off-target binding. Herein, we demonstrate that a polyphosphodiester-backboned molecular brush can suppress enzymatic digestion, reduce non-specific cell uptake, enable long blood circulation, and rescue the bioactivity of a conjugated aptamer in vivo. The backbone along with the aptamer is assembled via solid-phase synthesis, followed by installation of poly(ethylene glycol) (PEG) side chains using a two-step process with near-quantitative efficiency. The synthesis allows for precise control over polymer size and architecture. Consisting entirely of building blocks that are generally recognized as safe for therapeutics, this novel molecular brush is expected to provide a highly translatable route for aptamer-based therapeutics.


Asunto(s)
Aptámeros de Nucleótidos , Oligonucleótidos , Aptámeros de Nucleótidos/química , Oligonucleótidos/química , Polietilenglicoles/química
6.
Mol Pharm ; 18(3): 1386-1396, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33591187

RESUMEN

Chemokines and chemokine receptors play an important role in the initiation and progression of atherosclerosis by mediating the trafficking of inflammatory cells. Chemokine receptor 5 (CCR5) has major implications in promoting the development of plaques to advanced stage and related vulnerability. CCR5 antagonist has demonstrated the effective inhibition of atherosclerotic progression in mice, making it a potential biomarker for atherosclerosis management. To accurately determine CCR5 in vivo, we synthesized CCR5 targeted Comb nanoparticles through a modular design and construction strategy with control over the physiochemical properties and functionalization of CCR5 targeting peptide d-Ala-peptide T-amide (DAPTA-Comb). In vivo pharmacokinetic evaluation through 64Cu radiolabeling showed extended blood circulation of 64Cu-DAPTA-Combs conjugated with 10%, 25%, and 40% DAPTA. The different organ distribution profiles of the three nanoparticles demonstrated the effect of DAPTA on not only physicochemical properties but also targeting efficiency. In vivo positron emission tomography/computed tomography (PET/CT) imaging in an apolipoprotein E knockout mouse atherosclerosis model (ApoE-/-) showed that the three 64Cu-DAPTA-Combs could sensitively and specifically detect CCR5 along the progression of atherosclerotic lesions. In an ApoE-encoding adenoviral vector (AAV) induced plaque regression ApoE-/- mouse model, decreased monocyte recruitment, CD68+ macrophages, CCR5 expression, and plaque size were all associated with reduced PET signals, which not only further confirmed the targeting efficiency of 64Cu-DAPTA-Combs but also highlighted the potential of these targeted nanoparticles for atherosclerosis imaging. Moreover, the up-regulation of CCR5 and colocalization with CD68+ macrophages in the necrotic core of ex vivo human plaque specimens warrant further investigation for atherosclerosis prognosis.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Nanopartículas/administración & dosificación , Receptores CCR5/metabolismo , Alanina/metabolismo , Animales , Apolipoproteínas E/metabolismo , Quimiocinas/metabolismo , Radioisótopos de Cobre/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo
7.
Circ Res ; 124(6): 881-890, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30661445

RESUMEN

RATIONALE: Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. OBJECTIVE: To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. METHODS AND RESULTS: We synthesized and tested the performance of a positron emission tomography radiotracer (68Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2-/- mice, demonstrating target specificity. Autoradiography demonstrated that 68Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. CONCLUSIONS: These findings demonstrate the sensitivity and specificity of 68Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.


Asunto(s)
Corazón/diagnóstico por imagen , Macrófagos/fisiología , Monocitos/fisiología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Animales , Movimiento Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Imagen Molecular , Tomografía de Emisión de Positrones , Receptores CCR2/análisis
8.
Nanomedicine ; 36: 102416, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34147662

RESUMEN

The development of atherosclerosis therapy is hampered by the lack of molecular imaging tools to identify the relevant biomarkers and determine the dynamic variation in vivo. Here, we show that a chemokine receptor 2 (CCR2) targeted gold nanocluster conjugated with extracellular loop 1 inverso peptide (AuNC-ECL1i) determines the initiation, progression and regression of atherosclerosis in apolipoprotein E knock-out (ApoE-/-) mouse models. The CCR2 targeted 64Cu-AuNC-ECL1i reveals sensitive detection of early atherosclerotic lesions and progression of plaques in ApoE-/- mice. CCR2 targeting specificity was confirmed by the competitive receptor blocking studies. In a mouse model of aortic arch transplantation, 64Cu-AuNC-ECL1i accurately detects the regression of plaques. Human atherosclerotic tissues show high expression of CCR2 related to the status of the disease. This study confirms CCR2 as a useful marker for atherosclerosis and points to the potential of 64Cu-AuNC-ECL1i as a targeted molecular imaging probe for future clinical translation.


Asunto(s)
Aterosclerosis , Medios de Contraste , Sistemas de Liberación de Medicamentos , Oro , Nanopartículas del Metal , Placa Aterosclerótica , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/genética , Aterosclerosis/metabolismo , Medios de Contraste/química , Medios de Contraste/farmacocinética , Medios de Contraste/farmacología , Modelos Animales de Enfermedad , Oro/química , Oro/farmacocinética , Oro/farmacología , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratones , Ratones Noqueados para ApoE , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo
9.
Mol Pharm ; 16(9): 3996-4006, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31369274

RESUMEN

Folate receptor α (FRα) is a well-studied tumor biomarker highly expressed in many epithelial tumors such as breast, ovarian, and lung cancers. Mirvetuximab soravtansine (IMGN853) is the antibody-drug conjugate of FRα-binding humanized monoclonal antibody M9346A and cytotoxic maytansinoid drug DM4. IMGN853 is currently being evaluated in multiple clinical trials, in which the immunohistochemical evaluation of an archival tumor or biopsy specimen is used for patient screening. However, limited tissue collection may lead to inaccurate diagnosis due to tumor heterogeneity. Herein, we developed a zirconium-89 (89Zr)-radiolabeled M9346A (89Zr-M9346A) as an immuno-positron emission tomography (immuno-PET) radiotracer to evaluate FRα expression in triple-negative breast cancer (TNBC) patients, providing a novel means to guide intervention with therapeutic IMGN853. In this study, we verified the binding specificity and immunoreactivity of 89Zr-M9346A by in vitro studies in FRαhigh cells (HeLa) and FRαlow cells (OVCAR-3). In vivo PET/computed tomography (PET/CT) imaging in HeLa xenografts and TNBC patient-derived xenograft (PDX) mouse models with various levels of FRα expression demonstrated its targeting specificity and sensitivity. Following PET imaging, the treatment efficiencies of IMGN853, pemetrexed, IMGN853 + pemetrexed, paclitaxel, and saline were assessed in FRαhigh and FRαlow TNBC PDX models. The correlation between 89Zr-M9346A tumor uptake and treatment response using IMGN853 in FRαhigh TNBC PDX model suggested the potential of 89Zr-M9346A PET as a noninvasive tool to prescreen patients based on the in vivo PET imaging for IMGN853-targeted treatment.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Receptor 1 de Folato/inmunología , Receptor 1 de Folato/metabolismo , Inmunoconjugados/farmacocinética , Inmunoconjugados/uso terapéutico , Maitansina/análogos & derivados , Radioisótopos/farmacocinética , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Circonio/farmacocinética , Animales , Anticuerpos Monoclonales Humanizados/química , Antineoplásicos Fitogénicos/química , Quimioterapia Combinada , Femenino , Células HeLa , Humanos , Inmunoconjugados/química , Masculino , Maitansina/química , Maitansina/farmacocinética , Maitansina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Terapia Molecular Dirigida/métodos , Paclitaxel/uso terapéutico , Pemetrexed/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioisótopos/química , Distribución Tisular , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio/química
10.
Langmuir ; 35(5): 1503-1512, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30346776

RESUMEN

A zwitterionic polyphosphoester (zPPE), specifically l-cysteine-functionalized poly(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane (zPBYP), has been developed as a poly(ethylene glycol) (PEG) alternative coating material for gold nanoparticles (AuNPs), the most extensively investigated metal nanoparticulate platform toward molecular imaging, photothermal therapy, and drug delivery applications. Thiol-yne conjugation of cysteine transformed an initial azido-terminated and alkynyl-functionalized PBYP homopolymer into zPBYP, offering hydrolytic degradability, biocompatibility, and versatile reactive moieties for installation of a range of functional groups. Despite minor degradation during purification, zPPEs were able to stabilize AuNPs presumably through multivalent interactions between combinations of the side chain zwitterions (thioether and phosphoester groups of the zPPEs with the AuNPs). 31P NMR studies in D2O revealed ca. 20% hydrolysis of the phosphoester moieties of the repeat units had occurred during the workup and purification by aqueous dialysis at pH 3 over ca. 1 d, as observed by the 31P signal of the phosphotriesters resonating at ca. -0.5 to -1.7 shifting downfield to ca. 1.1 to -0.4 ppm, attributed to transformation to phosphates. Further hydrolysis of side chain and backbone units proceeded to an extent of ca. 75% over the next 2 d in nanopure water (pH 5-6). The NMR degradation results were consistent with the broadening and red-shift of the surface plasmon resonance (SPR) observed by UV-vis spectroscopy of the zPPE-coated AuNPs in water over time. All AuNP formulations in this study, including those with citrate, PEG, and zPPE coatings, exhibited negligible immunotoxicity, as determined by cytokine overexpression in the presence of the nanostructures relative to those in cell culture medium. Notably, the zPPE-coated AuNPs displayed superior antifouling properties, as assessed by the extent of cytokine adsorption relative to both the PEGylated and citrate-coated AuNPs. Taken together, the physicochemical and biological evaluations of zPPE-coated AuNPs in conjunction with PEGylated and citrate-coated analogues indicate the promise of zPPEs as favorable alternatives to PEG coatings, with negligible immunotoxicity, good antifouling performance, and versatile reactive groups that enable the preparation of highly tailored nanomaterials for diverse applications.


Asunto(s)
Plásticos Biodegradables/química , Materiales Biocompatibles Revestidos/química , Nanopartículas del Metal/química , Adsorción , Animales , Plásticos Biodegradables/síntesis química , Plásticos Biodegradables/metabolismo , Incrustaciones Biológicas/prevención & control , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/metabolismo , Citocinas/química , Citocinas/metabolismo , Oro/química , Ratones , Unión Proteica , Células RAW 264.7
11.
Small ; 14(30): e1703115, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29966035

RESUMEN

Focused ultrasound (FUS) technology is reported to enhance the delivery of 64 Cu-integrated ultrasmall gold nanoclusters (64 Cu-AuNCs) across the blood-brain barrier (BBB) as measured by positron emission tomography (PET). To better define the optimal physical properties for brain delivery, 64 Cu-AuNCs with different surface charges are synthesized and characterized. In vivo biodistribution studies are performed to compare the individual organ uptake of each type of 64 Cu-AuNCs. Quantitative PET imaging post-FUS treatment shows site-targeted brain penetration, retention, and diffusion of the negative, neutral, and positive 64 Cu-AuNCs. Autoradiography is performed to compare the intrabrain distribution of these nanoclusters. PET Imaging demonstrates the effective BBB opening and successful delivery of 64 Cu-AuNCs into the brain. Of the three 64 Cu-AuNCs investigated, the neutrally charged nanostructure performs the best and is the candidate platform for future theranostic applications in neuro-oncology.


Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Oro/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Tomografía de Emisión de Positrones , Ultrasonido/métodos , Animales , Nanopartículas del Metal/ultraestructura , Ratones , Polietilenglicoles/química , Propiedades de Superficie , Ácido Tióctico/química , Distribución Tisular
12.
J Labelled Comp Radiopharm ; 58(6): 234-41, 2015 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-25952472

RESUMEN

Purified (111) Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics, and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analog (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of (111) Ag acetate, [(111) Ag]SCC1, and [(111) Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the (111) Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [(111) Ag]SCC1 and twice as much dose was observed for the [(111) Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [(111) Ag]aSCK and [(111) Ag]zSCK, respectively) at 1 h post administration (p.a.). [(111) Ag]SCKs also exhibited higher dose retention in the lungs; 62-68% for [(111) Ag]SCKs and 43% for [(111) Ag]SCC1 of the initial 1 h dose were observed in the lungs at 24 h p.a.. This study demonstrates the utility of (111) Ag as a useful tool for monitoring the pharmacokinetics of silver-loaded antimicrobials in vivo.


Asunto(s)
Antiinfecciosos/farmacocinética , Nanopartículas del Metal/química , Plata/farmacocinética , Administración por Inhalación , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Nanopartículas del Metal/administración & dosificación , Ratones , Compuestos Organofosforados/química , Plata/química , Plata/farmacología , Distribución Tisular
13.
Langmuir ; 30(2): 631-41, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24392760

RESUMEN

The successful development of degradable polymeric nanostructures as optical probes for use in nanotheranostic applications requires the intelligent design of materials such that their surface response, degradation, drug delivery, and imaging properties are all optimized. In the case of imaging, optimization must result in materials that allow differentiation between unbound optical contrast agents and labeled polymeric materials as they undergo degradation. In this study, we have shown that use of traditional electrophoretic gel-plate assays for the determination of the purity of dye-conjugated degradable nanoparticles is limited by polymer degradation characteristics. To overcome these limitations, we have outlined a holistic approach to evaluating dye and peptide-polymer nanoparticle conjugation by utilizing steady-state fluorescence, anisotropy, and emission and anisotropy lifetime decay profiles, through which nanoparticle-dye binding can be assessed independently of perturbations, such as those presented during the execution of electrolyte gel-based assays. This approach has been demonstrated to provide an overall understanding of the spectral signature-structure-function relationship, ascertaining key information on interactions between the fluorophore, polymer, and solvent components that have a direct and measurable impact on the emissive properties of the optical probe. The use of these powerful techniques provides feedback that can be utilized to improve nanotheranostics by evaluating dye emissivity in degradable nanotheranostic systems, which has become increasingly important as modern platforms transition to architectures intentionally reliant on degradation and built-in environmental responses.


Asunto(s)
Medios de Contraste/química , Colorantes Fluorescentes/química , Nanopartículas/química , Nanotecnología , Polímeros/química , Anisotropía , Tamaño de la Partícula , Propiedades de Superficie
14.
J Nucl Med ; 65(2): 287-293, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176717

RESUMEN

The immune-fibrosis axis plays a critical role in cardiac remodeling after acute myocardial infarction. Imaging approaches to monitor temporal inflammation and fibroblast activation in mice have seen wide application in recent years. However, the repeatability of quantitative measurements remains challenging, particularly across multiple imaging centers. We aimed to determine reproducibility of quantitative inflammation and fibroblast activation images acquired at 2 facilities after myocardial infarction in mice. Methods: Mice underwent coronary artery ligation and sequential imaging with 68Ga-DOTA-ECL1i to assess chemokine receptor type 2 expression at 3 d after myocardial infarction and 68Ga-FAPI-46 to assess fibroblast activation protein expression at 7 d after myocardial infarction. Images were acquired at 1 center using either a local or a consensus protocol developed with the second center; the protocols differed in the duration of isoflurane anesthesia and the injected tracer dose. A second group of animals were scanned at the second site using the consensus protocol. Image analyses performed by each site and just by 1 site were also compared. Results: The uptake of 68Ga-DOTA-ECL1i in the infarct territory tended to be higher when the consensus protocol was used (P = 0.03). No difference was observed between protocol acquisitions for 68Ga-FAPI-46. Compared with the local protocol, the consensus protocol decreased variability between individual animals. When a matched consensus protocol was used, the 68Ga-DOTA-ECL1i infarct territory percentage injected dose per gram of tissue was higher on images acquired at site B than on those acquired at site A (P = 0.006). When normalized to body weight as SUV, this difference was mitigated. Both the percentage injected dose per gram of tissue and the SUV were comparable between sites for 68Ga-FAPI-46. Image analyses at the sites differed significantly, but this difference was mitigated when all images were analyzed at site A. Conclusion: The application of a standardized acquisition protocol may lower variability within datasets and facilitate comparison of molecular radiotracer distribution between preclinical imaging centers. Like clinical studies, multicenter preclinical studies should use centralized core-based image analysis to maximize reproducibility across sites.


Asunto(s)
Radioisótopos de Galio , Infarto del Miocardio , Ratones , Animales , Reproducibilidad de los Resultados , Infarto del Miocardio/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Inflamación , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
15.
Nucl Med Biol ; 130-131: 108893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422918

RESUMEN

Atherosclerosis is a chronic inflammatory disease and the leading cause of morbidity and mortality worldwide. CC motif chemokine ligand 2 and its corresponding cognate receptor 2 (CCL2/CCR2) signaling has been implicated in regulating monocyte recruitment and macrophage polarization during inflammatory responses that plays a pivotal role in atherosclerosis initiation and progression. In this study, we report the design and synthesis of a novel 18F radiolabeled small molecule radiotracer for CCR2-targeted positron emission tomography (PET) imaging in atherosclerosis. The binding affinity of this radiotracer to CCR2 was evaluated via in vitro binding assay using CCR2+ membrane and cells. Ex vivo biodistribution was carried out in wild type mice to assess radiotracer pharmacokinetics. CCR2 targeted PET imaging of plaques was performed in two murine atherosclerotic models. The sensitive detection of atherosclerotic lesions highlighted the potential of this radiotracer for CCR2 targeted PET and warranted further optimization.


Asunto(s)
Aterosclerosis , Ratones , Animales , Distribución Tisular , Aterosclerosis/metabolismo , Tomografía de Emisión de Positrones/métodos , Monocitos , Radiofármacos/farmacocinética , Ratones Endogámicos C57BL
16.
J Nucl Med ; 65(5): 775-780, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548349

RESUMEN

Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.


Asunto(s)
Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Aterosclerosis , Macrófagos , Tomografía de Emisión de Positrones , Receptores de Superficie Celular , Animales , Ratones , Tomografía de Emisión de Positrones/métodos , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Receptores de Superficie Celular/metabolismo , Humanos , Ratones Endogámicos C57BL , Radioisótopos de Cobre , Distribución Tisular , Radiofármacos/farmacocinética
17.
ACS Pharmacol Transl Sci ; 7(1): 285-293, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38230294

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and treatment-refractory malignancies. The lack of an effective screening tool results in the majority of patients being diagnosed at late stages, which underscores the urgent need to develop more sensitive and specific imaging modalities, particularly in detecting occult metastases, to aid clinical decision-making. The tumor microenvironment of PDAC is heavily infiltrated with myeloid-derived suppressor cells (MDSCs) that express C-C chemokine receptor type 2 (CCR2). These CCR2-expressing MDSCs accumulate at a very early stage of metastasis and greatly outnumber PDAC cells, making CCR2 a promising target for detecting early, small metastatic lesions that have scant PDAC cells. Herein, we evaluated a CCR2 targeting PET tracer (68Ga-DOTA-ECL1i) for PET imaging on PDAC metastasis in two mouse models. Positron emission tomography/computed tomography (PET/CT) imaging of 68Ga-DOTA-ECL1i was performed in a hemisplenic injection metastasis model (KI) and a genetically engineered orthotopic PDAC model (KPC), which were compared with 18F-FDG PET concurrently. Autoradiography, hematoxylin and eosin (H&E), and CCR2 immunohistochemical staining were performed to characterize the metastatic lesions. PET/CT images visualized the PDAC metastases in the liver/lung of KI mice and in the liver of KPC mice. Quantitative uptake analysis revealed increased metastasis uptake during disease progression in both models. In comparison, 18F-FDG PET failed to detect any metastases during the time course studies. H&E staining showed metastases in the liver and lung of KI mice, within which immunostaining clearly demonstrated the overexpression of CCR2 as well as CCR2+ cell infiltration into the normal liver. H&E staining, CCR2 staining, and autoradiography also confirmed the expression of CCR2 and the uptake of 68Ga-DOTA-ECL1i in the metastatic foci in KPC mice. Using our novel CCR2 targeted radiotracer 68Ga-DOTA-ECL1i and PET/CT, we demonstrated the sensitive and specific detection of CCR2 in the early PDAC metastases in two mouse models, indicating its potential in future clinical translation.

18.
Sci Transl Med ; 16(741): eadj9052, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569016

RESUMEN

Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-ß (Aß) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aß and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aß plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aß load, mitigated some Aß-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Ratones , Animales , Microglía/metabolismo , Anticuerpos/metabolismo , Receptores de Superficie Celular/metabolismo , Amiloide/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E , Leucocitos/metabolismo , Ratones Transgénicos , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
19.
J Am Chem Soc ; 135(12): 4636-9, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23461287

RESUMEN

Intermediates during the anionic polymerization of styrene were observed using hyperpolarized NMR. Dissolution dynamic nuclear polarization (DNP) of monomers provides a sufficient signal-to-noise ratio for detection of (13)C NMR signals in real time as the reaction progresses. Because of its large chemical shift dispersion, (13)C is well-suited to distinguish and characterize the chemical species that arise during the reaction. At the same time, incorporation of hyperpolarized small-molecule monomers is a unique way to generate polymers that exhibit a transient signal enhancement at the active site. This strategy is applicable despite the decay of the hyperpolarization of the polymer due to rapid spin-lattice relaxation. Real-time measurements on polymerization reactions provide both mechanistic and kinetic information without the need for stable isotope labeling of the molecules of interest. These capabilities are orthogonal to currently established methods that separate synthesis and analysis into two steps, making dissolution DNP an attractive method to study polymerization reactions.

20.
Biomacromolecules ; 14(9): 3346-53, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-23957247

RESUMEN

A natural product-based polymer platform, having the characteristics of being derived from renewable materials and capable of breaking down, ultimately, into natural byproducts, has been prepared through the ring-opening polymerization (ROP) of a glucose-based bicyclic carbonate monomer. ROP was carried out via chain extension of a polyphosphoester (PPE) macroinitiator in the presence of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) organocatalyst to afford the PPE-b-poly(D-glucose carbonate) (PDGC) block copolymer. This new copolymer represents a functional architecture that can be rapidly transformed through thiol-yne reactions along the PPE segment into a diverse variety of amphiphilic polymers, which interestingly display stimuli-sensitive phase behavior in the form of a lower critical solution temperature (LCST). Below the LCST, they undergo self-assembly to form spherical core-shell nanostructures that display a poorly defined core-shell morphology. It is expected that hydrophobic patches are exposed within the micellar corona, reminiscent of the surface complexity of proteins, making these materials of interest for triggered and reversible assembly disassembly processes.


Asunto(s)
Materiales Biocompatibles/síntesis química , Glucosa/análogos & derivados , Nanoestructuras/química , Organofosfatos/síntesis química , Poliésteres/síntesis química , Catálisis , Química Clic , Glucosa/síntesis química , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Micelas , Polimerizacion , Sonicación , Tensoactivos/síntesis química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda