RESUMEN
Background The diagnostic abilities of multimodal large language models (LLMs) using direct image inputs and the impact of the temperature parameter of LLMs remain unexplored. Purpose To investigate the ability of GPT-4V and Gemini Pro Vision in generating differential diagnoses at different temperatures compared with radiologists using Radiology Diagnosis Please cases. Materials and Methods This retrospective study included Diagnosis Please cases published from January 2008 to October 2023. Input images included original images and captures of the textual patient history and figure legends (without imaging findings) from PDF files of each case. The LLMs were tasked with providing three differential diagnoses, repeated five times at temperatures 0, 0.5, and 1. Eight subspecialty-trained radiologists solved cases. An experienced radiologist compared generated and final diagnoses, considering the result correct if the generated diagnoses included the final diagnosis after five repetitions. Accuracy was assessed across models, temperatures, and radiology subspecialties, with statistical significance set at P < .007 after Bonferroni correction for multiple comparisons across the LLMs at the three temperatures and with radiologists. Results A total of 190 cases were included in neuroradiology (n = 53), multisystem (n = 27), gastrointestinal (n = 25), genitourinary (n = 23), musculoskeletal (n = 17), chest (n = 16), cardiovascular (n = 12), pediatric (n = 12), and breast (n = 5) subspecialties. Overall accuracy improved with increasing temperature settings (0, 0.5, 1) for both GPT-4V (41% [78 of 190 cases], 45% [86 of 190 cases], 49% [93 of 190 cases], respectively) and Gemini Pro Vision (29% [55 of 190 cases], 36% [69 of 190 cases], 39% [74 of 190 cases], respectively), although there was no evidence of a statistically significant difference after Bonferroni adjustment (GPT-4V, P = .12; Gemini Pro Vision, P = .04). The overall accuracy of radiologists (61% [115 of 190 cases]) was higher than that of Gemini Pro Vision at temperature 1 (T1) (P < .001), while no statistically significant difference was observed between radiologists and GPT-4V at T1 after Bonferroni adjustment (P = .02). Radiologists (range, 45%-88%) outperformed the LLMs at T1 (range, 24%-75%) in most subspecialties. Conclusion Using direct radiologic image inputs, GPT-4V and Gemini Pro Vision showed improved diagnostic accuracy with increasing temperature settings. Although GPT-4V slightly underperformed compared with radiologists, it nonetheless demonstrated promising potential as a supportive tool in diagnostic decision-making. © RSNA, 2024 See also the editorial by Nishino and Ballard in this issue.
Asunto(s)
Radiólogos , Humanos , Estudios Retrospectivos , Diagnóstico Diferencial , Interpretación de Imagen Asistida por Computador/métodos , FemeninoRESUMEN
Social hierarchy has a profound impact on social behavior, reward processing, and mental health. Moreover, lower social rank can lead to chronic stress and often more serious problems such as bullying victims of abuse, suicide, or attack to society. However, its underlying mechanisms, particularly their association with glial factors, are largely unknown. In this study, we report that astrocyte-derived amphiregulin plays a critical role in the determination of hierarchical ranks. We found that astrocytes-secreted amphiregulin is directly regulated by cAMP response element-binding (CREB)-regulated transcription coactivator 3 (CRTC3) and CREB. Mice with systemic and astrocyte-specific CRTC3 deficiency exhibited a lower social rank with reduced functional connectivity between the prefrontal cortex, a major social hierarchy center, and the parietal cortex. However, this effect was reversed by astrocyte-specific induction of amphiregulin expression, and the epidermal growth factor domain was critical for this action of amphiregulin. These results provide evidence of the involvement of novel glial factors in the regulation of social dominance and may shed light on the clinical application of amphiregulin in the treatment of various psychiatric disorders.
Asunto(s)
Transducción de Señal , Factores de Transcripción , Animales , Ratones , Anfirregulina/genética , Ratones Noqueados , Predominio Social , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: Pharmacological inhibition of aryl hydrocarbon receptor (AhR) activation after ischemia alleviates cerebral ischemia/reperfusion (IR) injury. PURPOSE: To investigate whether AhR antagonist administration after reperfusion was also effective in attenuating cerebral IR injury. MATERIAL AND METHODS: A total of 24 Sprague-Dawley rats were divided into the sham-operated group (no IR), control group (IR), and 6,2',4'-trimethoxyflavone (TMF) group (IR + TMF administration), with 10 rats assigned to each group. Cerebral IR injury was induced by 60â min of middle cerebral artery occlusion followed by reperfusion. TMF (5â mg/kg) was used as the AhR antagonist and was administered intraperitoneally immediately after reperfusion. Cerebral IR injury was observed using magnetic resonance imaging (MRI) and neurobehavioral assessments at baseline, immediately after ischemia, and at 3 days after ischemia. RESULTS: On MRI, the TMF group showed no significant differences in relative apparent diffusion coefficient (ADC), T2, and fractional anisotropy (FA) values; midline shift value; and infarct volume. In terms of neurobehavioral function, factors such as grip strength, contralateral forelimb use, time to touch, and time to remove adhesive tape from the forepaw, were also not significantly different between the control and TMF groups. CONCLUSION: This study demonstrated that AhR treatment after reperfusion had no noticeable effect on reducing cerebral IR injury in rats.
Asunto(s)
Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Daño por Reperfusión/diagnóstico por imagen , Ratas , Masculino , Imagen por Resonancia Magnética/métodos , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/tratamiento farmacológico , Flavonas/farmacología , Flavonas/uso terapéutico , Modelos Animales de EnfermedadRESUMEN
OBJECTIVES: To develop and validate an automatic classification algorithm for diagnosing Alzheimer's disease (AD) or mild cognitive impairment (MCI). METHODS AND MATERIALS: This study evaluated a high-performance interpretable network algorithm (TabNet) and compared its performance with that of XGBoost, a widely used classifier. Brain segmentation was performed using a commercially approved software. TabNet and XGBoost were trained on the volumes or radiomics features of 102 segmented regions for classifying subjects into AD, MCI, or cognitively normal (CN) groups. The diagnostic performances of the two algorithms were compared using areas under the curves (AUCs). Additionally, 20 deep learning-based AD signature areas were investigated. RESULTS: Between December 2014 and March 2017, 161 AD, 153 MCI, and 306 CN cases were enrolled. Another 120 AD, 90 MCI, and 141 CN cases were included for the internal validation. Public datasets were used for external validation. TabNet with volume features had an AUC of 0.951 (95% confidence interval [CI], 0.947-0.955) for AD vs CN, which was similar to that of XGBoost (0.953 [95% CI, 0.951-0.955], p = 0.41). External validation revealed the similar performances of two classifiers using volume features (0.871 vs. 0.871, p = 0.86). Likewise, two algorithms showed similar performances with one another in classifying MCI. The addition of radiomics data did not improve the performance of TabNet. TabNet and XGBoost focused on the same 13/20 regions of interest, including the hippocampus, inferior lateral ventricle, and entorhinal cortex. CONCLUSIONS: TabNet shows high performance in AD classification and detailed interpretation of the selected regions. CLINICAL RELEVANCE STATEMENT: Using a high-performance interpretable deep learning network, the automatic classification algorithm assisted in accurate Alzheimer's disease detection using 3D T1-weighted brain MRI and detailed interpretation of the selected regions. KEY POINTS: ⢠MR volumetry data revealed that TabNet had a high diagnostic performance in differentiating Alzheimer's disease (AD) from cognitive normal cases, which was comparable with that of XGBoost. ⢠The addition of radiomics data to the volume data did not improve the diagnostic performance of TabNet. ⢠Both TabNet and XGBoost selected the clinically meaningful regions of interest in AD, including the hippocampus, inferior lateral ventricle, and entorhinal cortex.
Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Hipocampo/diagnóstico por imagenRESUMEN
OBJECTIVES: To develop and validate a nomogram based on MRI features for predicting iNPH. METHODS: Patients aged ≥ 60 years (clinically diagnosed with iNPH, Parkinson's disease, or Alzheimer's disease or healthy controls) who underwent MRI including three-dimensional T1-weighted volumetric MRI were retrospectively identified from two tertiary referral hospitals (one hospital for derivation set and the other for validation set). Clinical and imaging features for iNPH were assessed. Deep learning-based brain segmentation software was used for 3D volumetry. A prediction model was developed using logistic regression and transformed into a nomogram. The performance of the nomogram was assessed with respect to discrimination and calibration abilities. The nomogram was internally and externally validated. RESULTS: A total of 452 patients (mean age ± SD, 73.2 ± 6.5 years; 200 men) were evaluated as the derivation set. One hundred eleven and 341 patients were categorized into the iNPH and non-iNPH groups, respectively. In multivariable analysis, high-convexity tightness (odds ratio [OR], 35.1; 95% CI: 4.5, 275.5), callosal angle < 90° (OR, 12.5; 95% CI: 3.1, 50.0), and normalized lateral ventricle volume (OR, 4.2; 95% CI: 2.7, 6.7) were associated with iNPH. The nomogram combining these three variables showed an area under the curve of 0.995 (95% CI: 0.991, 0.999) in the study sample, 0.994 (95% CI: 0.990, 0.998) in the internal validation sample, and 0.969 (95% CI: 0.940, 0.997) in the external validation sample. CONCLUSION: A brain morphometry-based nomogram including high-convexity tightness, callosal angle < 90°, and normalized lateral ventricle volume can help accurately estimate the probability of iNPH. KEY POINTS: ⢠The nomogram with MRI findings (high-convexity tightness, callosal angle, and normalized lateral ventricle volume) helped in predicting the probability of idiopathic normal-pressure hydrocephalus. ⢠The nomogram may facilitate the prediction of idiopathic normal-pressure hydrocephalus and consequently avoid unnecessary invasive procedures such as the cerebrospinal fluid tap test, drainage test, and cerebrospinal fluid shunt surgery.
Asunto(s)
Enfermedad de Alzheimer , Hidrocéfalo Normotenso , Masculino , Humanos , Anciano , Nomogramas , Estudios Retrospectivos , Hidrocéfalo Normotenso/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodosRESUMEN
OBJECTIVE: To evaluate the diagnostic performance of hippocampal volumetry for Alzheimer's disease (AD) or mild cognitive impairment (MCI). METHODS: The MEDLINE and Embase databases were searched for articles that evaluated the diagnostic performance of hippocampal volumetry in differentiating AD or MCI from normal controls, published up to March 6, 2022. The quality of the articles was evaluated by the QUADAS-2 tool. A bivariate random-effects model was used to pool sensitivity, specificity, and area under the curve. Sensitivity analysis and meta-regression were conducted to explain study heterogeneity. The diagnostic performance of entorhinal cortex volumetry was also pooled. RESULTS: Thirty-three articles (5157 patients) were included. The pooled sensitivity and specificity for AD were 82% (95% confidence interval [CI], 77-86%) and 87% (95% CI, 82-91%), whereas those for MCI were 60% (95% CI, 51-69%) and 75% (95% CI, 67-81%), respectively. No difference in the diagnostic performance was observed between automatic and manual segmentation (p = 0.11). MMSE scores, study design, and the reference standard being used were associated with study heterogeneity (p < 0.01). Subgroup analysis demonstrated a higher diagnostic performance of entorhinal cortex volumetry for both AD (pooled sensitivity: 88% vs. 79%, specificity: 92% vs. 89%, p = 0.07) and MCI (pooled sensitivity: 71% vs. 55%, specificity: 83% vs. 68%, p = 0.06). CONCLUSIONS: Our meta-analysis demonstrated good diagnostic performance of hippocampal volumetry for AD or MCI. Entorhinal cortex volumetry might have superior diagnostic performance to hippocampal volumetry. However, due to a small number of studies, the diagnostic performance of entorhinal cortex volumetry is yet to be determined. KEY POINTS: ⢠The pooled sensitivity and specificity of hippocampal volumetry for Alzheimer's disease were 82% and 87%, whereas those for mild cognitive impairment were 60% and 75%, respectively. ⢠No significant difference in the diagnostic performance was observed between automatic and manual segmentation. ⢠Subgroup analysis demonstrated superior diagnostic performance of entorhinal cortex volumetry for AD (pooled sensitivity: 88%, specificity: 92%) and MCI (pooled sensitivity: 71%, specificity: 83%).
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Humanos , Sensibilidad y EspecificidadRESUMEN
OBJECTIVES: To investigate the pooled diagnostic yield of MR myelography in patients with newly diagnosed spontaneous intracranial hypotension (SIH). METHODS: A literature search of the MEDLINE/PubMed and Embase databases was conducted until July 25, 2021, including studies with the following inclusion criteria: (a) population: patients with newly diagnosed SIH; (b) diagnostic modality: MR myelography or MR myelography with intrathecal gadolinium for evaluation of CSF leakage; (c) outcomes: diagnostic yield of MR myelography or MR myelography with intrathecal gadolinium. The risk of bias was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. DerSimonian-Laird random-effects modeling was used to calculate the pooled estimates. Subgroup analysis regarding epidural fluid collection and meta-regression were additionally performed. RESULTS: Fifteen studies with 643 patients were included. Eight studies used MR myelography with intrathecal gadolinium, and 11 used MR myelography. The overall quality of the included studies was moderate. The pooled diagnostic yield of MR myelography was 86% (95% CI, 80-91%) and that of MR myelography with intrathecal gadolinium was 83% (95% CI, 51-96%). There was no significant difference in pooled diagnostic yield between MR myelography and MR myelography with intrathecal gadolinium (p = 0.512). In subgroup analysis, the pooled diagnostic yield of the epidural fluid collection was 91% (95% CI, 84-94%). In meta-regression, the diagnostic yield was unaffected regardless of consecutive enrollment, magnet strength, or 2D/3D. CONCLUSIONS: MR myelography had a high diagnostic yield in patients with SIH. MR myelography is non-invasive and not inferior to MR myelography with intrathecal gadolinium. KEY POINTS: ⢠The pooled diagnostic yield of MR myelography was 86% (95% CI, 80-91%) in patients with spontaneous intracranial hypotension. ⢠There was no significant difference in pooled diagnostic yield between MR myelography and MR myelography with intrathecal gadolinium. ⢠MR myelography is non-invasive and not inferior to MR myelography with intrathecal gadolinium.
Asunto(s)
Hipotensión Intracraneal , Mielografía , Humanos , Hipotensión Intracraneal/diagnóstico por imagen , Gadolinio/farmacología , Imagen por Resonancia Magnética , Pérdida de Líquido Cefalorraquídeo/diagnóstico por imagenRESUMEN
Background Investigations of amide proton signal changes in the white matter of demyelinating diseases may provide important biophysical information for diagnostic and prognostic assessments. Purpose To evaluate amide proton signals in cuprizone-induced rats using amide proton transfer-weighted (APTw) MRI, which provides in vivo image contrast by changing amide proton concentrations during demyelination (DEM) and subsequent remyelination (REM). Materials and Methods In this animal study, APTw 7-T MRI was performed in 21 male Wistar rats divided into cuprizone-induced (n = 14) and control (n = 7) groups from February to August 2020. The cuprizone-induced group was further subdivided into DEM (n = 7) and REM (n = 7) groups. Seven weeks after cuprizone feeding, rats in the DEM group were killed prior to transmission electron microscopy and myelin staining, while rats in the REM group were changed to a normal chow diet and fed for 5 weeks. In each group, the APTw signals were calculated using a conventional magnetization transfer ratio at 3.5 ppm based on regions of interest in the corpus callosum. Statistical differences in APTw signals among the groups were analyzed with one-way analysis of variance followed by Tukey post hoc tests. Results The mean APTw signals in the control and DEM groups were -4.42% ± 0.60 (standard deviation) (95% CI: -4.98, -3.86) and -2.57% ± 0.48 (95% CI: -3.01, -2.12), respectively, indicating higher in vivo APTw signals in the DEM lesion (P < .001). After REM, mean APTw signal in the REM group was -3.83% ± 0.67 (95% CI: -4.45, -3.22), similar to that in the control group (P = .18) and lower than that in the DEM group (P < .001). Conclusion Significant amide proton transfer-weighted (APTw) metric changes coupled with the histologic characteristics of the demyelination and remyelination processes indicate the potential usefulness of APTw 7-T MRI to monitor earlier myelination processes. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by van Zijl in this issue.
Asunto(s)
Cuprizona/administración & dosificación , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Amidas , Animales , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Masculino , Protones , Ratas , Ratas Wistar , Sustancia Blanca/patologíaRESUMEN
BACKGROUND: Glutamate-weighted chemical exchange saturation transfer (GluCEST) is a useful imaging tool that can be used to detect changes in glutamate levels in vivo and could also be helpful in the diagnosis of brain myelin changes. We investigated glutamate level changes in the cerebral white matter of a rat model of cuprizone-administered demyelination and remyelination using GluCEST. METHOD: We used a 7 T pre-clinical magnetic resonance imaging (MRI) system. The rats were divided into the normal control (CTRL), cuprizone-administered demyelination (CPZDM), and remyelination (CPZRM) groups. GluCEST data were analyzed using the conventional magnetization transfer ratio asymmetry in the corpus callosum. Immunohistochemistry and transmission electron microscopy analyses were also performed to investigate the myelinated axon changes in each group. RESULTS: The quantified GluCEST signals differed significantly between the CPZDM and CTRL groups (-7.25 ± 1.42% vs. -2.84 ± 1.30%; p = 0.001). The increased GluCEST signals in the CPZDM group decreased after remyelination (-6.52 ± 1.95% in CPZRM) to levels that did not differ significantly from those in the CTRL group (p = 0.734). CONCLUSION: The apparent temporal signal changes in GluCEST imaging during demyelination and remyelination demonstrated the potential usefulness of GluCEST imaging as a tool to monitor the myelination process.
Asunto(s)
Axones/metabolismo , Cuerpo Calloso/metabolismo , Enfermedades Desmielinizantes/metabolismo , Ácido Glutámico/metabolismo , Remielinización , Administración Oral , Animales , Axones/ultraestructura , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/ultraestructura , Cuprizona/administración & dosificación , Cuprizona/toxicidad , Modelos Animales de Enfermedad , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Microscopía Electrónica de Transmisión , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Ratas , Ratas Sprague-DawleyRESUMEN
Given the strong coupling between the substantia nigra (SN) and striatum (STR) in the early stage of Parkinson's disease (PD), yet only a few studies reported to date that have simultaneously investigated the neurochemistry of these two brain regions in vivo, we performed longitudinal metabolic profiling in the SN and STR of 1-methyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated common marmoset monkey models of PD (n = 10) by using proton MRS (1 H-MRS) at 9.4 T. T2 relaxometry was also performed in the SN by using MRI. Data were classified into control, MPTP_2weeks, and MPTP_6-10 weeks groups according to the treatment duration. In the SN, T2 of the MPTP_6-10 weeks group was lower than that of the control group (44.33 ± 1.75 versus 47.21 ± 2.47 ms, p < 0.05). The N-acetylaspartate to total creatine ratio (NAA/tCr) and γ-aminobutyric acid to tCr ratio (GABA/tCr) of the MPTP_6-10 weeks group were lower than those of the control group (0.41 ± 0.04 versus 0.54 ± 0.08 (p < 0.01) and 0.19 ± 0.03 versus 0.30 ± 0.09 (p < 0.05), respectively). The glutathione to tCr ratio (GSH/tCr) was correlated with T2 for the MPTP_6-10 weeks group (r = 0.83, p = 0.04). In the STR, however, GABA/tCr of the MPTP_6-10 weeks group was higher than that of the control group (0.25 ± 0.10 versus 0.16 ± 0.05, p < 0.05). These findings may be an in vivo depiction of the altered basal ganglion circuit in PD brain resulting from the degeneration of nigral dopaminergic neurons and disruption of nigrostriatal dopaminergic projections. Given the important role of non-human primates in translational studies, our findings provide better understanding of the complicated evolution of PD.
Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Cuerpo Estriado/metabolismo , Trastornos Parkinsonianos/metabolismo , Reconocimiento de Normas Patrones Automatizadas/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Sustancia Negra/metabolismo , Animales , Callithrix , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/diagnóstico por imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/efectos de los fármacosRESUMEN
This study aims to analyse the volumetric changes in brain MRI after cochlear implantation (CI), focusing on the speech perception in postlingually deaf adults. We conducted a prospective cohort study with 16 patients who had bilateral hearing loss and received unilateral CI. Based on the surgical side, patients were categorized into left and right CI groups. Volumetric T1-weighted brain MRI were obtained before and one year after the surgery. To overcome the artifact caused by the internal device in post-CI scan, image reconstruction method was newly devised and applied using the contralateral hemisphere of the pre-CI MRI data, to run FreeSurfer. We conducted within-subject template estimation for unbiased longitudinal image analysis, based on the linear mixed effect models. When analyzing the contralateral cerebral hemisphere before and after CI, a substantial increase in superior frontal gyrus and superior temporal gyrus (STG) volumes was observed in the left CI group. A positive correlation was observed in the STG and post-CI word recognition score in both groups. As far as we know, this is the first study attempting longitudinal brain volumetry based on post-CI MRI scans. We demonstrate that better auditory performance after CI is associated with structural restoration in central auditory structures.
Asunto(s)
Implantación Coclear , Sordera , Imagen por Resonancia Magnética , Percepción del Habla , Humanos , Masculino , Femenino , Implantación Coclear/métodos , Percepción del Habla/fisiología , Imagen por Resonancia Magnética/métodos , Sordera/fisiopatología , Sordera/cirugía , Sordera/diagnóstico por imagen , Adulto , Persona de Mediana Edad , Estudios Prospectivos , Anciano , Implantes CoclearesRESUMEN
Chemical exchange saturation transfer with glutamate (GluCEST) imaging is a novel technique for the non-invasive detection and quantification of cerebral Glu levels in neuromolecular processes. Here we used GluCEST imaging and 1H magnetic resonance spectroscopy (1H MRS) to assess in vivo changes in Glu signals within the hippocampus in a rat model of depression induced by a forced swim test. The forced swimming test (FST) group exhibited markedly reduced GluCEST-weighted levels and Glu concentrations when examined using 1H MRS in the hippocampal region compared to the control group (GluCEST-weighted levels: 3.67 ± 0.81% vs. 5.02 ± 0.44%, p < 0.001; and Glu concentrations: 6.560 ± 0.292 µmol/g vs. 7.133 ± 0.397 µmol/g, p = 0.001). Our results indicate that GluCEST imaging is a distinctive approach to detecting and monitoring Glu levels in a rat model of depression. Furthermore, the application of GluCEST imaging may provide a deeper insight into the neurochemical involvement of glutamate in various psychiatric disorders.
RESUMEN
Quantification of diffusion restriction lesions in sporadic Creutzfeldt-Jakob disease (sCJD) may provide information of the disease burden. We aim to develop an automatic segmentation model for sCJD and to evaluate the volume of disease extent as a prognostic marker for overall survival. Fifty-six patients (mean age ± SD, 61.2 ± 9.9 years) were included from February 2000 to July 2020. A threshold-based segmentation was used to obtain abnormal signal intensity masks. Segmented volumes were compared with the visual grade. The Dice similarity coefficient was calculated to measure the similarity between the automatic vs. manual segmentation. Cox proportional hazards regression analysis was performed to evaluate the volume of disease extent as a prognostic marker. The automatic segmentation showed good correlation with the visual grading. The cortical lesion volumes significantly increased as the visual grade aggravated (extensive: 112.9 ± 73.2; moderate: 45.4 ± 30.4; minimal involvement: 29.6 ± 18.1 mm3) (P < 0.001). The deep gray matter lesion volumes were significantly higher for positive than for negative involvement of the deep gray matter (5.6 ± 4.6 mm3 vs. 1.0 ± 1.3 mm3, P < 0.001). The mean Dice similarity coefficients were 0.90 and 0.94 for cortical and deep gray matter lesions, respectively. However, the volume of disease extent was not associated with worse overall survival (cortical extent: P = 0.07; deep gray matter extent: P = 0.12).
Asunto(s)
Síndrome de Creutzfeldt-Jakob , Sustancia Gris , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Síndrome de Creutzfeldt-Jakob/patología , Imagen de Difusión por Resonancia Magnética/métodos , Algoritmos , Imagen por Resonancia Magnética/métodosRESUMEN
BACKGROUND: The cholinergic neurotransmitter system is crucial to cognitive function, with the basal forebrain (BF) being particularly susceptible to Alzheimer's disease (AD) pathology. However, the interaction of white matter hyperintensities (WMH) in cholinergic pathways and BF atrophy without amyloid pathology remains poorly understood. METHODS: We enrolled patients who underwent neuropsychological tests, magnetic resonance imaging, and 18F-florbetaben positron emission tomography due to cognitive impairment at the teaching university hospital from 2015 to 2022. Among these, we selected patients with negative amyloid scans and additionally excluded those with Parkinson's dementia that may be accompanied by BF atrophy. The WMH burden of cholinergic pathways was quantified by the Cholinergic Pathways Hyperintensities Scale (CHIPS) score, and categorized into tertile groups because the CHIPS score did not meet normal distribution. Segmentation of the BF on volumetric T1-weighted MRI was performed using FreeSurfer, then was normalized for total intracranial volume. Multivariable regression analysis was performed to investigate the association between BF volumes and CHIPS scores. RESULTS: A total of 187 patients were enrolled. The median CHIPS score was 12 [IQR 5.0; 24.0]. The BF volume of the highest CHIPS tertile group (mean ± SD, 3.51 ± 0.49, CHIPSt3) was significantly decreased than those of the lower CHIPS tertile groups (3.75 ± 0.53, CHIPSt2; 3.83 ± 0.53, CHIPSt1; P = 0.02). In the univariable regression analysis, factors showing significant associations with the BF volume were the CHIPSt3 group, age, female, education, diabetes mellitus, smoking, previous stroke history, periventricular WMH, and cerebral microbleeds. In multivariable regression analysis, the CHIPSt3 group (standardized beta [ßstd] = -0.25, P = 0.01), female (ßstd = 0.20, P = 0.04), and diabetes mellitus (ßstd = -0.22, P < 0.01) showed a significant association with the BF volume. Sensitivity analyses showed a negative correlation between CHIPS score and normalized BF volume, regardless of WMH severity. CONCLUSIONS: We identified a significant correlation between strategic WMH burden in the cholinergic pathway and BF atrophy independently of amyloid positivity and WMH severity. These results suggest a mechanism of cholinergic neuronal loss through the dying-back phenomenon and provide a rationale that strategic WMH assessment may help identify target groups that may benefit from acetylcholinesterase inhibitor treatment.
Asunto(s)
Prosencéfalo Basal , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Sustancia Blanca , Humanos , Femenino , Masculino , Anciano , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Prosencéfalo Basal/diagnóstico por imagen , Prosencéfalo Basal/patología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/metabolismo , Atrofia/patología , Anciano de 80 o más AñosRESUMEN
OBJECTIVE: To evaluate the diagnostic performance of susceptibility map-weighted imaging (SMwI) taken in different acquisition planes for discriminating patients with neurodegenerative parkinsonism from those without. MATERIALS AND METHODS: This retrospective, observational, single-institution study enrolled consecutive patients who visited movement disorder clinics and underwent brain MRI and 18F-FP-CIT PET between September 2021 and December 2021. SMwI images were acquired in both the oblique (perpendicular to the midbrain) and the anterior commissure-posterior commissure (AC-PC) planes. Hyperintensity in the substantia nigra was determined by two neuroradiologists. 18F-FP-CIT PET was used as the reference standard. Inter-rater agreement was assessed using Cohen's kappa coefficient. The diagnostic performance of SMwI in the two planes was analyzed separately for the right and left substantia nigra. Multivariable logistic regression analysis with generalized estimating equations was applied to compare the diagnostic performance of the two planes. RESULTS: In total, 194 patients were included, of whom 105 and 103 had positive results on 18F-FP-CIT PET in the left and right substantia nigra, respectively. Good inter-rater agreement in the oblique (κ = 0.772/0.658 for left/right) and AC-PC planes (0.730/0.741 for left/right) was confirmed. The pooled sensitivities for two readers were 86.4% (178/206, left) and 83.3% (175/210, right) in the oblique plane and 87.4% (180/206, left) and 87.6% (184/210, right) in the AC-PC plane. The pooled specificities for two readers were 83.5% (152/182, left) and 82.0% (146/178, right) in the oblique plane, and 83.5% (152/182, left) and 86.0% (153/178, right) in the AC-PC plane. There were no significant differences in the diagnostic performance between the two planes (P > 0.05). CONCLUSION: There are no significant difference in the diagnostic performance of SMwI performed in the oblique and AC-PC plane in discriminating patients with parkinsonism from those without. This finding affirms that each institution may choose the imaging plane for SMwI according to their clinical settings.
Asunto(s)
Trastornos Parkinsonianos , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos Parkinsonianos/diagnóstico por imagen , Estudios Retrospectivos , TropanosRESUMEN
BACKGROUND AND PURPOSE: Idiopathic normal pressure hydrocephalus (iNPH) is reversible dementia, that is underdiagnosed. The purpose of this study was to develop an automated diagnostic method for iNPH using artificial intelligence techniques with a T1-weighted MRI scan. MATERIALS AND METHODS: We quantified iNPH, Parkinson's disease, Alzheimer's disease, and healthy control patients on T1-weighted 3D brain MRI scans using 452 scans for training and 110 scans for testing. Automatic component measurement algorithms were developed for Evans' index, Sylvian fissure enlargement, high-convexity tightness, callosal angle, and normalized lateral ventricle volume. XGBoost models were trained for both automated measurements and manual labels for iNPH prediction. RESULTS: A total of 452 patients (200 men; mean age ± standard deviation, 73.2 ± 6.5 years) were included in the training set. Of the 452 patients, 111 (24.6%) had iNPH. We obtained AUC values of 0.956 for automatically measured high-convexity tightness and 0.830 for Sylvian fissure enlargement. Intra-class correlation values of 0.824 for the callosal angle and 0.924 for Evans' index were measured. Using the decision tree of the XGBoost model, the model trained on manual labels obtained an average cross-validation AUC of 0.988 on the training set and 0.938 on the unseen test set, while the fully automated model obtained a cross-validation AUC of 0.983 and an unseen test AUC of 0.936. CONCLUSION: We demonstrated a machine-learning algorithm capable of diagnosing iNPH from a 3D T1-weighted MRI scan that is robust to the failure. We propose a method to scan large numbers of 3D T1-weighted MRI scans with minimal human intervention, making possible large-scale iNPH screening. ABBREVIATIONS: iNPH = idiopathic normal-pressure hydrocephalus; PD = Parkinson's disease; AD = Alzheimer's disease; HC = healthy control; CSF = cerebrospinal fluid; DESH = disproportionately enlarged subarachnoid space hydrocephalus; 3D = three-dimensional.
RESUMEN
Mesenchymal stem cells (MSCs) are effective vectors in delivering a gene of interest into degenerating brain. In ex vivo gene therapy, viability of transplanted MSCs is correlated with the extent of functional recovery. It has been reported that BDNF facilitates survival of MSCs but dividing MSCs do not express the BDNF receptor, TrkB. In this study, we found that the expression of TrkB is upregulated in human MSCs by the addition of forskolin (Fsk), an activator of adenylyl cyclase. To increase survival rate of MSCs and their secretion of tropic factors that enhance regeneration of endogenous cells, we pre-exposed hMSCs with Fsk and transduced with BDNF-adenovirus before transplantation into the brain of memory deficient rats, a degenerating brain disease model induced by ibotenic acid injection. Viability of MSCs and expression of a GABA synthesizing enzyme were increased. The pre-treatment improved learning and memory, as detected by the behavioral tests including Y-maze task and passive avoidance test. These results suggest that TrkB expression of hMSCs elevates the neuronal regeneration and efficiency of BDNF delivery for treating degenerative neurological diseases accompanying memory loss.
Asunto(s)
Colforsina/farmacología , Terapia Genética/métodos , Trastornos de la Memoria/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Receptor trkB/biosíntesis , Regeneración/efectos de los fármacos , Adenilil Ciclasas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Transducción Genética , Regulación hacia Arriba , Ácido gamma-Aminobutírico/metabolismoRESUMEN
We aimed to investigate the detection rate of brain MR and MR angiography for neuroimaging abnormality in newly diagnosed left-sided infective endocarditis patients with/without neurological symptoms. This retrospective study included consecutive patients with definite or possible left-sided infective endocarditis according to the modified Duke criteria who underwent brain MRI and MR angiography between March 2015 and October 2020. The detection rate for neuroimaging abnormality on MRI was defined as the number of patients with positive brain MRI findings divided by the number of patients with left-sided infective endocarditis. Positive imaging findings included acute ischemic lesions, cerebral microbleeds, hemorrhagic lesions, and infectious aneurysms. In addition, aneurysm rupture rate and median period to aneurysm rupture were evaluated on follow-up studies. A total 115 patients (mean age: 55 years ± 19; 65 men) were included. The detection rate for neuroimaging abnormality was 77% (89/115). The detection rate in patients without neurological symptoms was 70% (56/80). Acute ischemic lesions, cerebral microbleeds, and hemorrhagic lesions including superficial siderosis and intracranial hemorrhage were detected on MRI in 56% (64/115), 57% (66/115), and 20% (23/115) of patients, respectively. In particular, infectious aneurysms were detected on MR angiography in 3% of patients (4/115), but MR angiography in 5 patients (4.3%) was insignificant for infectious aneurysm, which were detected using CT angiography (n = 3) and digital subtraction angiography (n = 2) during follow-up. Among the 9 infectious aneurysm patients, aneurysm rupture occurred in 4 (44%), with a median period of aneurysm rupture of 5 days. The detection rate of brain MRI for neuroimaging abnormality in newly diagnosed left-sided infective endocarditis patients was high (77%), even without neurological symptoms (70%).
Asunto(s)
Aneurisma Infectado , Endocarditis , Aneurisma Intracraneal , Masculino , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Endocarditis/diagnóstico por imagen , Endocarditis/patología , Neuroimagen , Aneurisma Infectado/diagnóstico por imagen , Angiografía de Substracción Digital , Hemorragia Cerebral/patología , Aneurisma Intracraneal/patología , Angiografía Cerebral/métodosRESUMEN
Glutamate-weighted chemical exchange saturation transfer (GluCEST) is a useful imaging tool to detect glutamate signal alterations caused by neuroinflammation. This study aimed to visualize and quantitatively evaluate hippocampal glutamate alterations in a rat model of sepsis-induced brain injury using GluCEST and proton magnetic resonance spectroscopy (1H-MRS). Twenty-one Sprague Dawley rats were divided into three groups (sepsis-induced groups (SEP05, n = 7 and SEP10, n = 7) and controls (n = 7)). Sepsis was induced through a single intraperitoneal injection of lipopolysaccharide (LPS) at a dose of 5 mg/kg (SEP05) or 10 mg/kg (SEP10). GluCEST values and 1H-MRS concentrations in the hippocampal region were quantified using conventional magnetization transfer ratio asymmetry and a water scaling method, respectively. In addition, we examined immunohistochemical and immunofluorescence staining to observe the immune response and activity in the hippocampal region after LPS exposure. The GluCEST and 1H-MRS results showed that GluCEST values and glutamate concentrations were significantly higher in sepsis-induced rats than those in controls as the LPS dose increased. GluCEST imaging may be a helpful technique for defining biomarkers to estimate glutamate-related metabolism in sepsis-associated diseases.
RESUMEN
[This corrects the article DOI: 10.3389/fneur.2023.1221892.].