Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Infect Dis ; 226(1): 83-90, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34323977

RESUMEN

BACKGROUND: Current influenza vaccines are strain specific and demonstrate low vaccine efficacy against H3N2 influenza disease, especially when vaccine is mismatched to circulating virus. The novel influenza vaccine candidate, M2-deficient single replication (M2SR), induces a broad, multi-effector immune response. METHODS: A phase 2 challenge study was conducted to assess the efficacy of an M2SR vaccine expressing hemagglutinin and neuraminidase from A/Brisbane/10/2007 (Bris2007 M2SR H3N2; clade 1). Four weeks after vaccination, recipients were challenged with antigenically distinct H3N2 virus (A/Belgium/4217/2015, clade 3C.3b) and assessed for infection and clinical symptoms. RESULTS: Adverse events after vaccination were mild and similar in frequency for placebo and M2SR recipients. A single dose of Bris2007 M2SR induced neutralizing antibody to the vaccine (48% of recipients) and challenge strain (27% of recipients). Overall, 54% of M2SR recipients were infected after challenge, compared with 71% of placebo recipients. The subset of M2SR recipients with a vaccine-induced microneutralization response against the challenge virus had reduced rates of infection after challenge (38% vs 71% of placebo recipients; P = .050) and reduced illness. CONCLUSIONS: Study participants with vaccine-induced neutralizing antibodies were protected against infection and illness after challenge with an antigenically distinct virus. This is the first demonstration of vaccine-induced protection against a highly drifted H3N2 challenge virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Inmunidad , Subtipo H3N2 del Virus de la Influenza A
2.
J Infect Dis ; 227(1): 103-112, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36350017

RESUMEN

BACKGROUND: We previously demonstrated that an intranasal dose of 108 50% tissue culture infectious dose (TCID50) M2-deficient single replication (M2SR) influenza vaccine protected against highly drifted H3N2 influenza challenge in a subset of subjects who demonstrated ≥2-fold increase in microneutralization (MN) antibodies to Belgium2015 (the challenge strain) after vaccination. Here, we describe a phase 1b, observer-blinded, dose-escalation study demonstrating an increased proportion of responders with this signal of immune protection. METHODS: Serosusceptible subjects aged 18-49 years were randomized to receive 2 doses (108-109 TCID50) of M2SR or placebo administered 28 days apart. Clinical specimens were collected before and after each dose. The primary objective was to demonstrate safety of M2SR vaccines. RESULTS: The vaccine was well tolerated at all dose levels. Against Belgium2015, ≥ 2-fold increases in MN antibodies were noted among 40% (95% confidence interval [CI], 24.9%-56.7%) of subjects following a single 108 TCID50 M2SR dose and among 80.6% (95% CI, 61.4%-92.3%) after 109 dose (P < .001). A single 109 TCID50 dose of M2SR generated ≥4-fold hemagglutination inhibition antibody seroconversion against the vaccine strain in 71% (95% CI, 52.0%-85.8%) of recipients. Mucosal and cellular immune responses were also induced. CONCLUSIONS: These results indicate that M2SR may provide substantial protection against infection with highly drifted strains of H3N2 influenza. CLINICAL TRIALS REGISTRATION: NCT03999554.


In recent years, influenza A H3N2 viruses have evolved into multiple cocirculating clades, resulting in low vaccine efficacy and highlighting the need for more effective influenza vaccines. In a previous challenge study, a single intranasal dose of the investigational vaccine M2SR demonstrated protection against a highly drifted H3N2 influenza challenge virus in a subset of vaccine recipients with a signature immune response. Increasing the dose of the M2SR vaccine in this phase1b study demonstrated a statistically significant increase in the proportion of subjects with the signature immune responses seen previously. The vaccine-induced antibodies were cross-reactive with a panel of drifted H3N2 viruses from 2007 to 2019. Additionally, M2SR generated a rise in serum hemagglutination inhibition antibody titer in 71% of subjects. In contrast, the H3N2 seroresponse rate for the licensed intranasal vaccine FluMist is 10% in seronegative adults. Moreover, M2SR elicited mucosal and cell-mediated immune responses. This study demonstrates that the intranasal M2SR generates a multifaceted immune response and has the potential to provide better efficacy against vaccine-matched strains and influenza drift variants reducing the need to update the vaccine on an annual basis. This is a noteworthy step in the development of a broadly protective influenza vaccine.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Adulto , Subtipo H3N2 del Virus de la Influenza A , Anticuerpos Antivirales , Vacunación , Pruebas de Inhibición de Hemaglutinación
3.
Vaccines (Basel) ; 9(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34960134

RESUMEN

M2SR (M2-deficient single replication) is an investigational live intranasal vaccine that protects against multiple influenza A subtypes in influenza-naïve and previously infected ferrets. We conducted a phase 1, first-in-human, randomized, dose-escalation, placebo-controlled study of M2SR safety and immunogenicity. Adult subjects received a single intranasal administration with either placebo or one of three M2SR dose levels (106, 107 or 108 tissue culture infectious dose (TCID50)) expressing hemagglutinin and neuraminidase from A/Brisbane/10/2007 (H3N2) (24 subjects per group). Subjects were evaluated for virus replication, local and systemic reactions, adverse events (AE), and immune responses post-vaccination. Infectious virus was not detected in nasal swabs from vaccinated subjects. At least one AE (most commonly mild nasal rhinorrhea/congestion) was reported among 29%, 58%, and 83% of M2SR subjects administered a low, medium or high dose, respectively, and among 46% of placebo subjects. No subject had fever or a severe reaction to the vaccine. Influenza-specific serum and mucosal antibody responses and B- and T-cell responses were significantly more frequent among vaccinated subjects vs. placebo recipients. The M2SR vaccine was safe and well tolerated and generated dose-dependent durable serum antibody responses against diverse H3N2 influenza strains. M2SR demonstrated a multi-faceted immune response in seronegative and seropositive subjects.

4.
Hum Vaccin ; 4(1): 36-43, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18438102

RESUMEN

A novel DNA vaccine was generated using genomic fragments of a pathogen as the source of both the antigen coding and regulatory regions. The constructs, termed subgenomic vaccines (SGVs), incorporated genomic DNA sequences up to 45 kbp that encompass 15-20 different genes. The SGVs were developed to generate vaccines capable of expressing multiple genes from a single construct, which could be of great benefit for commercialization. The unique feature of the SGVs is that genes are expressed from their native promoters rather than heterologous promoters typical of DNA vaccines. SGVs composed of genomic fragments from the DS-DNA virus Herpes Simplex Virus Type 2 (HSV-2) induced HSV-2 specific immune responses following particle-mediated epidermal delivery (PMED) in mice and these responses protected animals from lethal infectious challenge. A second generation SGV (SGV-H2), intended as an HSV-2 therapeutic vaccine, was generated that had five HSV-2 genes and was capable of generating multi-antigenic responses in naïve mice, and enhancing responses in infected animals. When compared with standard single plasmid vaccines, immunization with the SGV-H2 was found to be at least as effective as single plasmids or plasmid mixtures. The activity of the SGV-H2 could be greatly enhanced by co-delivering plasmids expressing E. coli heat labile toxin (LT) or cholera toxin CT as adjuvants as has been found previously for standard single-gene DNA vaccines.


Asunto(s)
Antígenos Virales/inmunología , Herpesvirus Humano 2/genética , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/genética , Chlorocebus aethiops , ADN Viral/inmunología , Herpesvirus Humano 2/inmunología , Humanos , Inmunización , Ratones , Ratones Endogámicos BALB C , Plásmidos/genética , Vacunas de ADN/administración & dosificación , Células Vero , Vacunas Virales/administración & dosificación
5.
Pharmaceutics ; 3(1): 107-24, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24310428

RESUMEN

Cell migration and invasion are processes that offer rich targets for intervention in key physiologic and pathologic phenomena such as wound healing and cancer metastasis. With the advent of high-throughput and high content imaging systems, there has been a movement towards the use of physiologically relevant cell-based assays earlier in the testing paradigm. This allows more effective identification of lead compounds and recognition of undesirable effects sooner in the drug discovery screening process. This article will review the effective use of several principle formats for studying cell motility: scratch assays, transmembrane assays, microfluidic devices and cell exclusion zone assays.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda