Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Dev Biol ; 481: 75-94, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597675

RESUMEN

While the epithelial cell cortex displays profound asymmetries in protein distribution and morphology along the apico-basal axis, the extent to which the cytoplasm is similarly polarized within epithelial cells remains relatively unexplored. We show that cytoplasmic organelles within C. elegans embryonic intestinal cells develop extensive apico-basal polarity at the time they establish cortical asymmetry. Nuclei and conventional endosomes, including early endosomes, late endosomes, and lysosomes, become polarized apically. Lysosome-related gut granules, yolk platelets, and lipid droplets become basally enriched. Removal of par-3 activity does not disrupt organelle positioning, indicating that cytoplasmic apico-basal asymmetry is independent of the PAR polarity pathway. Blocking the apical migration of nuclei leads to the apical positioning of gut granules and yolk platelets, whereas the asymmetric localization of conventional endosomes and lipid droplets is unaltered. This suggests that nuclear positioning organizes some, but not all, cytoplasmic asymmetries in this cell type. We show that gut granules become apically enriched when WHT-2 and WHT-7 function is disrupted, identifying a novel role for ABCG transporters in gut granule positioning during epithelial polarization. Analysis of WHT-2 and WHT-7 ATPase mutants is consistent with a WHT-2/WHT-7 heterodimer acting as a transporter in gut granule positioning. In wht-2(-) mutants, the polarized distribution of other organelles is not altered and gut granules do not take on characteristics of conventional endosomes that could have explained their apical mispositioning. During epithelial polarization wht-2(-) gut granules exhibit a loss of the Rab32/38 family member GLO-1 and ectopic expression of GLO-1 is sufficient to rescue the basal positioning of wht-2(-) and wht-7(-) gut granules. Furthermore, depletion of GLO-1 causes the mislocalization of the endolysosomal RAB-7 to gut granules and RAB-7 drives the apical mispositioning of gut granules when GLO-1, WHT-2, or WHT-7 function is disrupted. We suggest that ABC transporters residing on gut granules can regulate Rab dynamics to control organelle positioning during epithelial polarization.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Polaridad Celular , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Orgánulos/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Orgánulos/genética
2.
PLoS Genet ; 14(11): e1007772, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30419011

RESUMEN

Cell type-specific modifications of conventional endosomal trafficking pathways lead to the formation of lysosome-related organelles (LROs). C. elegans gut granules are intestinally restricted LROs that coexist with conventional degradative lysosomes. The formation of gut granules requires the Rab32 family member GLO-1. We show that the loss of glo-1 leads to the mistrafficking of gut granule proteins but does not significantly alter conventional endolysosome biogenesis. GLO-3 directly binds to CCZ-1 and they both function to promote the gut granule association of GLO-1, strongly suggesting that together, GLO-3 and CCZ-1 activate GLO-1. We found that a point mutation in GLO-1 predicted to spontaneously activate, and function independently of it guanine nucleotide exchange factor (GEF), localizes to gut granules and partially restores gut granule protein localization in ccz-1(-) and glo-3(-) mutants. CCZ-1 forms a heterodimeric complex with SAND-1(MON1), which does not function in gut granule formation, to activate RAB-7 in trafficking pathways to conventional lysosomes. Therefore, our data suggest a model whereby the function of a Rab GEF can be altered by subunit exchange. glo-3(-) mutants, which retain low levels of GLO-3 activity, generate gut granules that lack GLO-1 and improperly accumulate RAB-7 in a SAND-1 dependent process. We show that GLO-1 and GLO-3 restrict the distribution of RAB-7 to conventional endolysosomes, providing insights into the segregation of pathways leading to conventional lysosomes and LROs.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Gránulos Citoplasmáticos/metabolismo , Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Genes de Helminto , Lisosomas/metabolismo , Mutación , Biogénesis de Organelos , Dominios y Motivos de Interacción de Proteínas , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/genética
3.
Traffic ; 17(5): 515-35, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26822177

RESUMEN

LYST-1 is a Caenorhabditis elegans BEACH domain containing protein (BDCP) homologous to LYST and NBEAL2, BDCPs controlling organelle biogenesis that are implicated in human disease. Unlike the three other BDCPs encoded by C. elegans, mutations in lyst-1 lead to smaller lysosome-related organelles (LROs), smaller lysosomes, increased numbers of LROs and decreased numbers of early endosomes. lyst-1(-) mutations do not obviously disrupt protein trafficking to lysosomes or LROs, however, the formation of gut granules is diminished.


Asunto(s)
Caenorhabditis elegans/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Proteínas de Transporte Vesicular/genética
4.
Mol Biol Cell ; 18(3): 995-1008, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17202409

RESUMEN

Caenorhabditis elegans gut granules are intestine specific lysosome-related organelles with birefringent and autofluorescent contents. We identified pgp-2, which encodes an ABC transporter, in screens for genes required for the proper formation of gut granules. pgp-2(-) embryos mislocalize birefringent material into the intestinal lumen and are lacking in acidified intestinal V-ATPase-containing compartments. Adults without pgp-2(+) function similarly lack organelles with gut granule characteristics. These cellular phenotypes indicate that pgp-2(-) animals are defective in gut granule biogenesis. Double mutant analysis suggests that pgp-2(+) functions in parallel with the AP-3 adaptor complex during gut granule formation. We find that pgp-2 is expressed in the intestine where it functions in gut granule biogenesis and that PGP-2 localizes to the gut granule membrane. These results support a direct role of an ABC transporter in regulating lysosome biogenesis. Previously, pgp-2(+) activity has been shown to be necessary for the accumulation of Nile Red-stained fat in C. elegans. We show that gut granules are sites of fat storage in C. elegans embryos and adults. Notably, levels of triacylglycerides are relatively normal in animals defective in the formation of gut granules. Our results provide an explanation for the loss of Nile Red-stained fat in pgp-2(-) animals as well as insight into the specialized function of this lysosome-related organelle.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Metabolismo de los Lípidos , Lisosomas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Complejo 3 de Proteína Adaptadora , Adenosina Trifosfatasas/metabolismo , Animales , Birrefringencia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/citología , Endocitosis , Exones/genética , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/metabolismo , Membranas Intracelulares/metabolismo , Mutación/genética , Transporte de Proteínas
5.
Genetics ; 214(2): 419-445, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31848222

RESUMEN

ABC transporters couple ATP hydrolysis to the transport of substrates across cellular membranes. This protein superfamily has diverse activities resulting from differences in their cargo and subcellular localization. Our work investigates the role of the ABCG family member WHT-2 in the biogenesis of gut granules, a Caenorhabditis elegans lysosome-related organelle. In addition to being required for the accumulation of birefringent material within gut granules, WHT-2 is necessary for the localization of gut granule proteins when trafficking pathways to this organelle are partially disrupted. The role of WHT-2 in gut granule protein targeting is likely linked to its function in Rab GTPase localization. We show that WHT-2 promotes the gut granule association of the Rab32 family member GLO-1 and the endolysosomal RAB-7, identifying a novel function for an ABC transporter. WHT-2 localizes to gut granules where it could play a direct role in controlling Rab localization. Loss of CCZ-1 and GLO-3, which likely function as a guanine nucleotide exchange factor (GEF) for GLO-1, lead to similar disruption of GLO-1 localization. We show that CCZ-1, like GLO-3, is localized to gut granules. WHT-2 does not direct the gut granule association of the GLO-1 GEF and our results point to WHT-2 functioning differently than GLO-3 and CCZ-1 Point mutations in WHT-2 that inhibit its transport activity, but not its subcellular localization, lead to the loss of GLO-1 from gut granules, while other WHT-2 activities are not completely disrupted, suggesting that WHT-2 functions in organelle biogenesis through transport-dependent and transport-independent activities.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G/genética , Transportador de Casetes de Unión a ATP, Subfamilia G/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportadoras de Casetes de Unión a ATP/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación , Biogénesis de Organelos , Fenotipo , Transporte de Proteínas/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
6.
Genetics ; 180(2): 857-71, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18780725

RESUMEN

Gut granules are specialized lysosome-related organelles that act as sites of fat storage in Caenorhabditis elegans intestinal cells. We identified mutations in a gene, glo-3, that functions in the formation of embryonic gut granules. Some glo-3(-) alleles displayed a complete loss of embryonic gut granules, while other glo-3(-) alleles had reduced numbers of gut granules. A subset of glo-3 alleles led to mislocalization of gut granule contents into the intestinal lumen, consistent with a defect in intracellular trafficking. glo-3(-) embryos lacking gut granules developed into adults containing gut granules, indicating that glo-3(+) function may be differentially required during development. We find that glo-3(+) acts in parallel with or downstream of the AP-3 complex and the PGP-2 ABC transporter in gut granule biogenesis. glo-3 encodes a predicted membrane-associated protein that lacks obvious sequence homologs outside of nematodes. glo-3 expression initiates in embryonic intestinal precursors and persists almost exclusively in intestinal cells through adulthood. GLO-3GFP localizes to the gut granule membrane, suggesting it could play a direct role in the trafficking events at the gut granule. smg-1(-) suppression of glo-3(-) nonsense alleles indicates that the C-terminal half of GLO-3, predicted to be present in the cytoplasm, is not necessary for gut granule formation. Our studies identify GLO-3 as a novel player in the formation of lysosome-related organelles.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Genes de Helminto , Lisosomas/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/metabolismo , Datos de Secuencia Molecular , Fenotipo
7.
Genetics ; 177(3): 1569-82, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17947407

RESUMEN

Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Genes de Helminto , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Birrefringencia , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , ADN de Helmintos/genética , Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Resistencia a Múltiples Medicamentos/genética , Lisosomas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Fenotipo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
8.
Mol Biol Cell ; 16(7): 3273-88, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15843430

RESUMEN

The intestinal cells of Caenorhabditis elegans embryos contain prominent, birefringent gut granules that we show are lysosome-related organelles. Gut granules are labeled by lysosomal markers, and their formation is disrupted in embryos depleted of AP-3 subunits, VPS-16, and VPS-41. We define a class of gut granule loss (glo) mutants that are defective in gut granule biogenesis. We show that the glo-1 gene encodes a predicted Rab GTPase that localizes to lysosome-related gut granules in the intestine and that glo-4 encodes a possible GLO-1 guanine nucleotide exchange factor. These and other glo genes are homologous to genes implicated in the biogenesis of specialized, lysosome-related organelles such as melanosomes in mammals and pigment granules in Drosophila. The glo mutants thus provide a simple model system for the analysis of lysosome-related organelle biogenesis in animal cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Factores de Intercambio de Guanina Nucleótido/genética , Lisosomas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Naranja de Acridina/farmacología , Complejo 3 de Proteína Adaptadora , Alelos , Secuencia de Aminoácidos , Animales , Transporte Biológico , Tamaño Corporal , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/genética , Drosophila , Epistasis Genética , GTP Fosfohidrolasas/metabolismo , Genes de Helminto , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Mucosa Intestinal/metabolismo , Melanosomas/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Temperatura , Factores de Transcripción/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/fisiología
9.
Methods Mol Biol ; 1840: 163-180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30141045

RESUMEN

Studying nuclear positioning in developing tissues of the model nematode Caenorhabditis elegans greatly contributed to the discovery of SUN and KASH proteins and the formation of the LINC model. Such studies continue to make important contributions into both how LINC complexes are regulated and how defects in LINC components disrupt normal development. The methods described explain how to observe and quantify the following: nuclear migration in embryonic dorsal hypodermal cells, nuclear migration through constricted spaces in larval P cells, nuclear positioning in the embryonic intestinal primordia, and nuclear anchorage in syncytial hypodermal cells. These methods will allow others to employ nuclear positioning in C. elegans as a model to further explore LINC complex regulation and function.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animales , Biomarcadores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas GABAérgicas/metabolismo , Membrana Nuclear/metabolismo
10.
Mol Biol Cell ; 25(7): 1073-96, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24501423

RESUMEN

As early endosomes mature, the SAND-1/CCZ-1 complex acts as a guanine nucleotide exchange factor (GEF) for RAB-7 to promote the activity of its effector, HOPS, which facilitates late endosome-lysosome fusion and the consumption of AP-3-containing vesicles. We show that CCZ-1 and the HOPS complex are essential for the biogenesis of gut granules, cell type-specific, lysosome-related organelles (LROs) that coexist with conventional lysosomes in Caenorhabditis elegans intestinal cells. The HOPS subunit VPS-18 promotes the trafficking of gut granule proteins away from lysosomes and functions downstream of or in parallel to the AP-3 adaptor. CCZ-1 also acts independently of AP-3, and ccz-1 mutants mistraffic gut granule proteins. Our results indicate that SAND-1 does not participate in the formation of gut granules. In the absence of RAB-7 activity, gut granules are generated; however, their size and protein composition are subtly altered. These observations suggest that CCZ-1 acts in partnership with a protein other than SAND-1 as a GEF for an alternate Rab to promote gut granule biogenesis. Point mutations in GLO-1, a Rab32/38-related protein, predicted to increase spontaneous guanine nucleotide exchange, specifically suppress the loss of gut granules by ccz-1 and glo-3 mutants. GLO-3 is known to be required for gut granule formation and has homology to SAND-1/Mon1-related proteins, suggesting that CCZ-1 functions with GLO-3 upstream of the GLO-1 Rab, possibly as a GLO-1 GEF. These results support LRO formation occurring via processes similar to conventional lysosome biogenesis, albeit with key molecular differences.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Gránulos Citoplasmáticos/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endosomas/metabolismo , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/embriología , Proteínas Mutantes/metabolismo , Transporte de Proteínas , Supresión Genética , Proteínas de Unión a GTP rab7
11.
PLoS One ; 7(8): e43043, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22916203

RESUMEN

The human disease Hermansky-Pudlak syndrome results from defective biogenesis of lysosome-related organelles (LROs) and can be caused by mutations in subunits of the BLOC-1 complex. Here we show that C. elegans glo-2 and snpn-1, despite relatively low levels of amino acid identity, encode Pallidin and Snapin BLOC-1 subunit homologues, respectively. BLOC-1 subunit interactions involving Pallidin and Snapin were conserved for GLO-2 and SNPN-1. Mutations in glo-2 and snpn-1,or RNAi targeting 5 other BLOC-1 subunit homologues in a genetic background sensitized for glo-2 function, led to defects in the biogenesis of lysosome-related gut granules. These results indicate that the BLOC-1 complex is conserved in C. elegans. To address the function of C. elegans BLOC-1, we assessed the intracellular sorting of CDF-2::GFP, LMP-1, and PGP-2 to gut granules. We validated their utility by analyzing their mislocalization in intestinal cells lacking the function of AP-3, which participates in an evolutionarily conserved sorting pathway to LROs. BLOC-1(-) intestinal cells missorted gut granule cargo to the plasma membrane and conventional lysosomes and did not have obviously altered function or morphology of organelles composing the conventional lysosome protein sorting pathway. Double mutant analysis and comparison of AP-3(-) and BLOC-1(-) phenotypes revealed that BLOC-1 has some functions independent of the AP-3 adaptor complex in trafficking to gut granules. We discuss similarities and differences of BLOC-1 activity in the biogenesis of gut granules as compared to mammalian melanosomes, where BLOC-1 has been most extensively studied for its role in sorting to LROs. Our work opens up the opportunity to address the function of this poorly understood complex in cell and organismal physiology using the genetic approaches available in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Gránulos Citoplasmáticos/metabolismo , Lisosomas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Unión Proteica , Técnicas del Sistema de Dos Híbridos
12.
FEBS J ; 277(6): 1420-39, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20148972

RESUMEN

Gut granules are cell type-specific lysosome-related organelles found within the intestinal cells of Caenorhabditis elegans. To investigate the regulation of lysosome-related organelle size, we screened for C. elegans mutants with substantially enlarged gut granules, identifying alleles of the vacuolar-type H(+)-ATPase and uridine-5'-monophosphate synthase (UMPS)-1. UMPS-1 catalyzes the conversion of orotic acid to UMP; this comprises the two terminal steps in de novo pyrimidine biosynthesis. Mutations in the orthologous human gene UMPS result in the rare genetic disease orotic aciduria. The umps-1(-) mutation promoted the enlargement of gut granules to 250 times their normal size, whereas other endolysosomal organelles were not similarly affected. UMPS-1::green fluorescent protein was expressed in embryonic and adult intestinal cells, where it was cytoplasmically localized and not obviously associated with gut granules. Whereas the umps-1(-) mutant is viable, combination of umps-1(-) with mutations disrupting gut granule biogenesis resulted in synthetic lethality. The effects of mutations in pyr-1, which encodes the enzyme catalyzing the first three steps of de novo pyrimidine biosynthesis, did not phenotypically resemble those of umps-1(-); instead, the synthetic lethality and enlargement of gut granules exhibited by the umps-1(-) mutant was suppressed by pyr-1(-). In a search for factors that mediate the enlargement of gut granules in the umps-1(-) mutant, we identified WHT-2, an ABCG transporter previously implicated in gut granule function. Our data suggest that umps-1(-) leads to enlargement of gut granules through a build-up of orotic acid. WHT-2 possibly facilitates the increase in gut granule size of the umps-1(-) mutant by transporting orotic acid into the gut granule and promoting osmotically induced swelling of the compartment.


Asunto(s)
Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Orotato Fosforribosiltransferasa/genética , Orotato Fosforribosiltransferasa/metabolismo , Ácido Orótico/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/genética , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans/embriología , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Larva , Lisosomas/genética , Lisosomas/patología , Datos de Secuencia Molecular , Mutación , Tamaño de la Partícula , Fenotipo
13.
Biochem Biophys Res Commun ; 335(4): 1231-8, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16115612

RESUMEN

We have identified and characterized a monoclonal antibody, F2-P3E3, that recognizes a Caenorhabditis elegans apoptotic epitope expressed within phagocytic cells, which is conserved in four other nematode species. In C. elegans, F2-P3E3 staining requires both programmed cell death and phagocytosis. We show that the F2-P3E3 epitope is expressed within embryonic intestinal cells, which act as phagocytes but do not undergo programmed cell death. F2-P3E3 staining is present within LMP-1::GFP labeled organelles in the intestinal primordium and is coincident with persistent DNA that has been phagocytosed in nuc-1(-) embryos, suggesting that it labels phagosomes. While apoptotic events are typically isolated in C. elegans, F2-P3E3 staining is commonly found within adjacent cells. This observation suggests that F2-P3E3 might recognize an epitope expressed in multiple cells in response to signals from a single corpse. F2-P3E3 represents a new tool for studying cell death in C. elegans.


Asunto(s)
Apoptosis/fisiología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fagocitos/metabolismo , Fagocitosis/fisiología , Animales , Anticuerpos Monoclonales/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Secuencia Conservada , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda