Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Chem Res Toxicol ; 34(2): 385-395, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33507738

RESUMEN

The safety of marketed drugs is an ongoing concern, with some of the more frequently prescribed medicines resulting in serious or life-threatening adverse effects in some patients. Safety-related information for approved drugs has been curated to include the assignment of toxicity class(es) based on their withdrawn status and/or black box warning information described on medicinal product labels. The ChEMBL resource contains a wide range of bioactivity data types, from early "Discovery" stage preclinical data for individual compounds through to postclinical data on marketed drugs; the inclusion of the curated drug safety data set within this framework can support a wide range of safety-related drug discovery questions. The curated drug safety data set will be made freely available through ChEMBL and updated in future database releases.


Asunto(s)
Preparaciones Farmacéuticas/química , Curaduría de Datos , Aprobación de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Modelos Moleculares
2.
Nucleic Acids Res ; 47(D1): D930-D940, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30398643

RESUMEN

ChEMBL is a large, open-access bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012, 2014 and 2017 Nucleic Acids Research Database Issues. In the last two years, several important improvements have been made to the database and are described here. These include more robust capture and representation of assay details; a new data deposition system, allowing updating of data sets and deposition of supplementary data; and a completely redesigned web interface, with enhanced search and filtering capabilities.


Asunto(s)
Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Bioensayo , Publicaciones Periódicas como Asunto , Interfaz Usuario-Computador
3.
Nucleic Acids Res ; 45(D1): D945-D954, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899562

RESUMEN

ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012 and 2014 Nucleic Acids Research Database Issues. Since then, alongside the continued extraction of data from the medicinal chemistry literature, new sources of bioactivity data have also been added to the database. These include: deposited data sets from neglected disease screening; crop protection data; drug metabolism and disposition data and bioactivity data from patents. A number of improvements and new features have also been incorporated. These include the annotation of assays and targets using ontologies, the inclusion of targets and indications for clinical candidates, addition of metabolic pathways for drugs and calculation of structural alerts. The ChEMBL data can be accessed via a web-interface, RDF distribution, data downloads and RESTful web-services.


Asunto(s)
Bases de Datos de Compuestos Químicos , Bases de Datos de Ácidos Nucleicos , Motor de Búsqueda , Biología Computacional/métodos , Protección de Cultivos , Descubrimiento de Drogas , Ontología de Genes , Humanos , Anotación de Secuencia Molecular , Farmacología/métodos , Interfaz Usuario-Computador , Navegador Web
4.
Nucleic Acids Res ; 45(D1): D995-D1002, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27903890

RESUMEN

The 'druggable genome' encompasses several protein families, but only a subset of targets within them have attracted significant research attention and thus have information about them publicly available. The Illuminating the Druggable Genome (IDG) program was initiated in 2014, has the goal of developing experimental techniques and a Knowledge Management Center (KMC) that would collect and organize information about protein targets from four families, representing the most common druggable targets with an emphasis on understudied proteins. Here, we describe two resources developed by the KMC: the Target Central Resource Database (TCRD) which collates many heterogeneous gene/protein datasets and Pharos (https://pharos.nih.gov), a multimodal web interface that presents the data from TCRD. We briefly describe the types and sources of data considered by the KMC and then highlight features of the Pharos interface designed to enable intuitive access to the IDG knowledgebase. The aim of Pharos is to encourage 'serendipitous browsing', whereby related, relevant information is made easily discoverable. We conclude by describing two use cases that highlight the utility of Pharos and TCRD.


Asunto(s)
Bases de Datos Genéticas , Descubrimiento de Drogas , Genómica , Farmacogenética , Motor de Búsqueda , Análisis por Conglomerados , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Genómica/métodos , Humanos , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/metabolismo , Farmacogenética/métodos , Programas Informáticos , Navegador Web
5.
Nucleic Acids Res ; 45(D1): D985-D994, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899665

RESUMEN

We have designed and developed a data integration and visualization platform that provides evidence about the association of known and potential drug targets with diseases. The platform is designed to support identification and prioritization of biological targets for follow-up. Each drug target is linked to a disease using integrated genome-wide data from a broad range of data sources. The platform provides either a target-centric workflow to identify diseases that may be associated with a specific target, or a disease-centric workflow to identify targets that may be associated with a specific disease. Users can easily transition between these target- and disease-centric workflows. The Open Targets Validation Platform is accessible at https://www.targetvalidation.org.


Asunto(s)
Biología Computacional/métodos , Terapia Molecular Dirigida , Motor de Búsqueda , Programas Informáticos , Bases de Datos Factuales , Humanos , Terapia Molecular Dirigida/métodos , Reproducibilidad de los Resultados , Navegador Web , Flujo de Trabajo
6.
Nucleic Acids Res ; 44(D1): D1220-8, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26582922

RESUMEN

SureChEMBL is a publicly available large-scale resource containing compounds extracted from the full text, images and attachments of patent documents. The data are extracted from the patent literature according to an automated text and image-mining pipeline on a daily basis. SureChEMBL provides access to a previously unavailable, open and timely set of annotated compound-patent associations, complemented with sophisticated combined structure and keyword-based search capabilities against the compound repository and patent document corpus; given the wealth of knowledge hidden in patent documents, analysis of SureChEMBL data has immediate applications in drug discovery, medicinal chemistry and other commercial areas of chemical science. Currently, the database contains 17 million compounds extracted from 14 million patent documents. Access is available through a dedicated web-based interface and data downloads at: https://www.surechembl.org/.


Asunto(s)
Bases de Datos de Compuestos Químicos , Patentes como Asunto , Minería de Datos , Preparaciones Farmacéuticas/química
7.
Bioinformatics ; 31(10): 1695-7, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25964657

RESUMEN

MOTIVATION: ADME SARfari is a freely available web resource that enables comparative analyses of drug-disposition genes. It does so by integrating a number of publicly available data sources, which have subsequently been used to build data mining services, predictive tools and visualizations for drug metabolism researchers. The data include the interactions of small molecules with ADME (absorption, distribution, metabolism and excretion) proteins responsible for the metabolism and transport of molecules; available pharmacokinetic (PK) data; protein sequences of ADME-related molecular targets for pre-clinical model species and human; alignments of the orthologues including information on known SNPs (Single Nucleotide Polymorphism) and information on the tissue distribution of these proteins. In addition, in silico models have been developed, which enable users to predict which ADME relevant protein targets a novel compound is likely to interact with.


Asunto(s)
Farmacogenética , Farmacocinética , Programas Informáticos , Animales , Simulación por Computador , Perros , Genómica , Humanos , Internet , Polimorfismo de Nucleótido Simple , Proteínas/química , Proteínas/metabolismo , Distribución Tisular
8.
Nucleic Acids Res ; 42(Database issue): D1083-90, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24214965

RESUMEN

ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012 Nucleic Acids Research Database Issue. Since then, a variety of new data sources and improvements in functionality have contributed to the growth and utility of the resource. In particular, more comprehensive tracking of compounds from research stages through clinical development to market is provided through the inclusion of data from United States Adopted Name applications; a new richer data model for representing drug targets has been developed; and a number of methods have been put in place to allow users to more easily identify reliable data. Finally, access to ChEMBL is now available via a new Resource Description Framework format, in addition to the web-based interface, data downloads and web services.


Asunto(s)
Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas , Sitios de Unión , Humanos , Internet , Ligandos , Preparaciones Farmacéuticas/química , Proteínas/química , Proteínas/efectos de los fármacos
9.
J Comput Aided Mol Des ; 29(9): 885-96, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26201396

RESUMEN

The emergence of a number of publicly available bioactivity databases, such as ChEMBL, PubChem BioAssay and BindingDB, has raised awareness about the topics of data curation, quality and integrity. Here we provide an overview and discussion of the current and future approaches to activity, assay and target data curation of the ChEMBL database. This curation process involves several manual and automated steps and aims to: (1) maximise data accessibility and comparability; (2) improve data integrity and flag outliers, ambiguities and potential errors; and (3) add further curated annotations and mappings thus increasing the usefulness and accuracy of the ChEMBL data for all users and modellers in particular. Issues related to activity, assay and target data curation and integrity along with their potential impact for users of the data are discussed, alongside robust selection and filter strategies in order to avoid or minimise these, depending on the desired application.


Asunto(s)
Bioensayo , Exactitud de los Datos , Bases de Datos de Compuestos Químicos , Curaduría de Datos/normas , Bases de Datos de Compuestos Químicos/normas , Bases de Datos Factuales , Concentración 50 Inhibidora
10.
Drug Discov Today Technol ; 14: 17-24, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26194583

RESUMEN

There is a wealth of valuable chemical information in publicly available databases for use by scientists undertaking drug discovery. However finite curation resource, limitations of chemical structure software and differences in individual database applications mean that exact chemical structure equivalence between databases is unlikely to ever be a reality. The ability to identify compound equivalence has been made significantly easier by the use of the International Chemical Identifier (InChI), a non-proprietary line-notation for describing a chemical structure. More importantly, advances in methods to identify compounds that are the same at various levels of similarity, such as those containing the same parent component or having the same connectivity, are now enabling related compounds to be linked between databases where the structure matches are not exact.


Asunto(s)
Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas , Estructura Molecular , Programas Informáticos
11.
Nucleic Acids Res ; 40(Database issue): D1100-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21948594

RESUMEN

ChEMBL is an Open Data database containing binding, functional and ADMET information for a large number of drug-like bioactive compounds. These data are manually abstracted from the primary published literature on a regular basis, then further curated and standardized to maximize their quality and utility across a wide range of chemical biology and drug-discovery research problems. Currently, the database contains 5.4 million bioactivity measurements for more than 1 million compounds and 5200 protein targets. Access is available through a web-based interface, data downloads and web services at: https://www.ebi.ac.uk/chembldb.


Asunto(s)
Bases de Datos Factuales , Descubrimiento de Drogas , Bases de Datos de Proteínas , Humanos , Preparaciones Farmacéuticas/química , Proteínas/química , Proteínas/metabolismo , Interfaz Usuario-Computador
12.
Biochem Soc Trans ; 39(5): 1365-70, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21936816

RESUMEN

The challenge of translating the huge amount of genomic and biochemical data into new drugs is a costly and challenging task. Historically, there has been comparatively little focus on linking the biochemical and chemical worlds. To address this need, we have developed ChEMBL, an online resource of small-molecule SAR (structure-activity relationship) data, which can be used to support chemical biology, lead discovery and target selection in drug discovery. The database contains the abstracted structures, properties and biological activities for over 700000 distinct compounds and in excess of more than 3 million bioactivity records abstracted from over 40000 publications. Additional public domain resources can be readily integrated into the same data model (e.g. PubChem BioAssay data). The compounds in ChEMBL are largely extracted from the primary medicinal chemistry literature, and are therefore usually 'drug-like' or 'lead-like' small molecules with full experimental context. The data cover a significant fraction of the discovery of modern drugs, and are useful in a wide range of drug design and discovery tasks. In addition to the compound data, ChEMBL also contains information for over 8000 protein, cell line and whole-organism 'targets', with over 4000 of those being proteins linked to their underlying genes. The database is searchable both chemically, using an interactive compound sketch tool, protein sequences, family hierarchies, SMILES strings, compound research codes and key words, and biologically, using a variety of gene identifiers, protein sequence similarity and protein families. The information retrieved can then be readily filtered and downloaded into various formats. ChEMBL can be accessed online at https://www.ebi.ac.uk/chembldb.


Asunto(s)
Minería de Datos , Bases de Datos Factuales , Descubrimiento de Drogas , Animales , Biología Computacional/métodos , Genómica , Humanos , Almacenamiento y Recuperación de la Información , Estructura Molecular , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Proteínas/química , Relación Estructura-Actividad
13.
J Med Chem ; 64(11): 7210-7230, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33983732

RESUMEN

Physicochemical descriptors commonly used to define "drug-likeness" and ligand efficiency measures are assessed for their ability to differentiate marketed drugs from compounds reported to bind to their efficacious target or targets. Using ChEMBL version 26, a data set of 643 drugs acting on 271 targets was assembled, comprising 1104 drug-target pairs having ≥100 published compounds per target. Taking into account changes in their physicochemical properties over time, drugs are analyzed according to their target class, therapy area, and route of administration. Recent drugs, approved in 2010-2020, display no overall differences in molecular weight, lipophilicity, hydrogen bonding, or polar surface area from their target comparator compounds. Drugs are differentiated from target comparators by higher potency, ligand efficiency (LE), lipophilic ligand efficiency (LLE), and lower carboaromaticity. Overall, 96% of drugs have LE or LLE values, or both, greater than the median values of their target comparator compounds.


Asunto(s)
Ligandos , Preparaciones Farmacéuticas/química , Bases de Datos de Compuestos Químicos , Vías de Administración de Medicamentos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Peso Molecular , Preparaciones Farmacéuticas/metabolismo
14.
Bioorg Med Chem Lett ; 20(15): 4683-8, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20566291

RESUMEN

Optimization of the novel alpha-2-delta-1 ligand 4 provided compounds 37 and 38 which have improved DMPK profiles, good in vivo analgesic activity and in vitro selectivity over alpha-2-delta-2. An in-house P-gp prediction programme and the MetaSite software package were used to help solve the specific problems of high P-gp efflux and high in vivo clearance.


Asunto(s)
Analgésicos/química , Bloqueadores de los Canales de Calcio/química , Canales de Calcio/química , Neuralgia/tratamiento farmacológico , Pirazoles/química , Piridazinas/química , Piridinas/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Analgésicos/síntesis química , Analgésicos/uso terapéutico , Animales , Bloqueadores de los Canales de Calcio/síntesis química , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio/metabolismo , Canales de Calcio Tipo L , Ligandos , Pirazoles/síntesis química , Piridazinas/síntesis química , Piridazinas/uso terapéutico , Piridinas/síntesis química , Ratas , Relación Estructura-Actividad
15.
J Cheminform ; 12(1): 51, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33431044

RESUMEN

BACKGROUND: The ChEMBL database is one of a number of public databases that contain bioactivity data on small molecule compounds curated from diverse sources. Incoming compounds are typically not standardised according to consistent rules. In order to maintain the quality of the final database and to easily compare and integrate data on the same compound from different sources it is necessary for the chemical structures in the database to be appropriately standardised. RESULTS: A chemical curation pipeline has been developed using the open source toolkit RDKit. It comprises three components: a Checker to test the validity of chemical structures and flag any serious errors; a Standardizer which formats compounds according to defined rules and conventions and a GetParent component that removes any salts and solvents from the compound to create its parent. This pipeline has been applied to the latest version of the ChEMBL database as well as uncurated datasets from other sources to test the robustness of the process and to identify common issues in database molecular structures. CONCLUSION: All the components of the structure pipeline have been made freely available for other researchers to use and adapt for their own use. The code is available in a GitHub repository and it can also be accessed via the ChEMBL Beaker webservices. It has been used successfully to standardise the nearly 2 million compounds in the ChEMBL database and the compound validity checker has been used to identify compounds with the most serious issues so that they can be prioritised for manual curation.

16.
Commun Biol ; 3(1): 573, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060801

RESUMEN

Uncovering cellular responses from heterogeneous genomic data is crucial for molecular medicine in particular for drug safety. This can be realized by integrating the molecular activities in networks of interacting proteins. As proof-of-concept we challenge network modeling with time-resolved proteome, transcriptome and methylome measurements in iPSC-derived human 3D cardiac microtissues to elucidate adverse mechanisms of anthracycline cardiotoxicity measured with four different drugs (doxorubicin, epirubicin, idarubicin and daunorubicin). Dynamic molecular analysis at in vivo drug exposure levels reveal a network of 175 disease-associated proteins and identify common modules of anthracycline cardiotoxicity in vitro, related to mitochondrial and sarcomere function as well as remodeling of extracellular matrix. These in vitro-identified modules are transferable and are evaluated with biopsies of cardiomyopathy patients. This to our knowledge most comprehensive study on anthracycline cardiotoxicity demonstrates a reproducible workflow for molecular medicine and serves as a template for detecting adverse drug responses from complex omics data.


Asunto(s)
Metaboloma , Modelos Biológicos , Proteoma , Transcriptoma , Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Metabolómica/métodos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteómica/métodos , Sarcómeros/genética , Sarcómeros/metabolismo , Transducción de Señal
17.
J Cheminform ; 11(1): 64, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33430932

RESUMEN

In response to Krstajic's letter to the editor concerning our published paper, we here take the opportunity to reply, to re-iterate that no errors in our work were identified, to provide further details, and to re-emphasise the outputs of our study. Moreover, we highlight that all of the data are freely available for the wider scientific community (including the aforementioned correspondent) to undertake follow-on studies and comparisons.

18.
J Cheminform ; 11(1): 4, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631996

RESUMEN

Structure-activity relationship modelling is frequently used in the early stage of drug discovery to assess the activity of a compound on one or several targets, and can also be used to assess the interaction of compounds with liability targets. QSAR models have been used for these and related applications over many years, with good success. Conformal prediction is a relatively new QSAR approach that provides information on the certainty of a prediction, and so helps in decision-making. However, it is not always clear how best to make use of this additional information. In this article, we describe a case study that directly compares conformal prediction with traditional QSAR methods for large-scale predictions of target-ligand binding. The ChEMBL database was used to extract a data set comprising data from 550 human protein targets with different bioactivity profiles. For each target, a QSAR model and a conformal predictor were trained and their results compared. The models were then evaluated on new data published since the original models were built to simulate a "real world" application. The comparative study highlights the similarities between the two techniques but also some differences that it is important to bear in mind when the methods are used in practical drug discovery applications.

19.
Eur J Pharm Sci ; 34(2-3): 149-63, 2008 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-18467078

RESUMEN

The objective of this investigation is to characterize the role of complex biophase distribution kinetics in the pharmacokinetic-pharmacodynamic correlation of a wide range of opioids. Following intravenous infusion of morphine, alfentanil, fentanyl, sufentanil, butorphanol and nalbuphine the time course of the EEG effect was determined in conjunction with blood concentrations. Different biophase distribution models were tested for their ability to describe hysteresis between blood concentration and effect. In addition, membrane transport characteristics of the opioids were investigated in vitro, using MDCK:MDR1 cells and in silico with QSAR analysis. For morphine, hysteresis was best described by an extended-catenary biophase distribution model with different values for k1e and keo of 0.038+/-0.003 and 0.043+/-0.003 min(-1), respectively. For the other opioids hysteresis was best described by a one-compartment biophase distribution model with identical values for k1e and keo. Between the different opioids, the values of k1e ranged from 0.04 to 0.47 min(-1). The correlation between concentration and EEG effect was successfully described by the sigmoidal Emax pharmacodynamic model. Between opioids significant differences in potency (EC50 range 1.2-451 ng/ml) and intrinsic activity (alpha range 18-109 microV) were observed. A statistically significant correlation was observed between the values of the in vivo k1e and the apparent passive permeability as determined in vitro in MDCK:MDR1 monolayers. It can be concluded that unlike other opioids, only morphine displays complex biophase distribution kinetics, which can be explained by its relatively low passive permeability and the interaction with active transporters at the blood-brain barrier.


Asunto(s)
Analgésicos Opioides/farmacología , Analgésicos Opioides/farmacocinética , Electroencefalografía/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Algoritmos , Animales , Línea Celular , Difusión , Perros , Masculino , Modelos Estadísticos , Permeabilidad , Relación Estructura-Actividad Cuantitativa , Ratas , Ratas Wistar , Distribución Tisular
20.
Sci Data ; 5: 180230, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30351302

RESUMEN

ChEMBL is a large-scale, open-access drug discovery resource containing bioactivity information primarily extracted from scientific literature. A substantial dataset of more than 135,000 in vivo assays has been collated as a key resource of animal models for translational medicine within drug discovery. To improve the utility of the in vivo data, an extensive data curation task has been undertaken that allows the assays to be grouped by animal disease model or phenotypic endpoint. The dataset contains previously unavailable information about compounds or drugs tested in animal models and, in conjunction with assay data on protein targets or cell- or tissue- based systems, allows the investigation of the effects of compounds at differing levels of biological complexity. Equally, it enables researchers to identify compounds that have been investigated for a group of disease-, pharmacology- or toxicity-relevant assays.


Asunto(s)
Bioensayo , Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas/métodos , Animales , Evaluación Preclínica de Medicamentos , Modelos Animales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda