Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nucleic Acids Res ; 52(8): 4466-4482, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567721

RESUMEN

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.


Asunto(s)
Emparejamiento Base , Escherichia coli , Fluoruros , Conformación de Ácido Nucleico , Riboswitch , Transcripción Genética , Riboswitch/genética , Fluoruros/química , Escherichia coli/genética , Simulación de Dinámica Molecular , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Pliegue del ARN , Magnesio/química , Secuencia de Bases , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Thermus/genética , Thermus/enzimología
2.
RNA ; 29(11): 1658-1672, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37419663

RESUMEN

Riboswitches are cis-regulatory RNA elements that regulate gene expression in response to ligand binding through the coordinated action of a ligand-binding aptamer domain (AD) and a downstream expression platform (EP). Previous studies of transcriptional riboswitches have uncovered diverse examples that utilize structural intermediates that compete with the AD and EP folds to mediate the switching mechanism on the timescale of transcription. Here we investigate whether similar intermediates are important for riboswitches that control translation by studying the Escherichia coli thiB thiamin pyrophosphate (TPP) riboswitch. Using cellular gene expression assays, we first confirmed that the riboswitch acts at the level of translational regulation. Deletion mutagenesis showed the importance of the AD-EP linker sequence for riboswitch function. Sequence complementarity between the linker region and the AD P1 stem suggested the possibility of an intermediate nascent RNA structure called the antisequestering stem that could mediate the thiB switching mechanism. Experimentally informed secondary structure models of the thiB folding pathway generated from chemical probing of nascent thiB structures in stalled transcription elongation complexes confirmed the presence of the antisequestering stem, and showed it may form cotranscriptionally. Additional mutational analysis showed that mutations to the antisequestering stem break or bias thiB function according to whether the antisequestering stem or P1 is favored. This work provides an important example of intermediate structures that compete with AD and EP folds to implement riboswitch mechanisms.


Asunto(s)
Riboswitch , Riboswitch/genética , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo , Escherichia coli/metabolismo , Ligandos , ARN Bacteriano/metabolismo , Conformación de Ácido Nucleico , Pliegue del ARN
3.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338693

RESUMEN

The Gárdos channel (KCNN4) and Piezo1 are the best-known ion channels in the red blood cell (RBC) membrane. Nevertheless, the quantitative electrophysiological behavior of RBCs and its heterogeneity are still not completely understood. Here, we use state-of-the-art biochemical methods to probe for the abundance of the channels in RBCs. Furthermore, we utilize automated patch clamp, based on planar chips, to compare the activity of the two channels in reticulocytes and mature RBCs. In addition to this characterization, we performed membrane potential measurements to demonstrate the effect of channel activity and interplay on the RBC properties. Both the Gárdos channel and Piezo1, albeit their average copy number of activatable channels per cell is in the single-digit range, can be detected through transcriptome analysis of reticulocytes. Proteomics analysis of reticulocytes and mature RBCs could only detect Piezo1 but not the Gárdos channel. Furthermore, they can be reliably measured in the whole-cell configuration of the patch clamp method. While for the Gárdos channel, the activity in terms of ion currents is higher in reticulocytes compared to mature RBCs, for Piezo1, the tendency is the opposite. While the interplay between Piezo1 and Gárdos channel cannot be followed using the patch clamp measurements, it could be proved based on membrane potential measurements in populations of intact RBCs. We discuss the Gárdos channel and Piezo1 abundance, interdependencies and interactions in the context of their proposed physiological and pathophysiological functions, which are the passing of small constrictions, e.g., in the spleen, and their active participation in blood clot formation and thrombosis.


Asunto(s)
Eritrocitos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Reticulocitos , Transporte Biológico , Calcio/metabolismo , Eritrocitos/metabolismo , Reticulocitos/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canales Iónicos/metabolismo
4.
Pharm Res ; 38(8): 1405-1418, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34389916

RESUMEN

PURPOSE: To investigate the effectiveness of targeted ECO/miR-200c in modulating tumor microenvironment and treating triple negative breast cancer (TNBC) using non-invasive magnetic resonance molecular imaging (MRMI) of extradomain B fibronectin (EDB-FN) with a targeted MRI contrast agent. METHODS: MDA-MB-231 and Hs578T TNBC cells were transfected with RGD-PEG-ECO/miR-200c. Invasive and migratory potential was evaluated using transwell, scratch wound, and spheroid formation assays. Athymic nude mice bearing orthotopic MDA-MB-231 and Hs578T xenografts were treated with weekly i.v. injection of RGD-PEG-ECO/miR-200c nanoparticles at 1.0 mg/kg/week RNA for 6 weeks. MRMI of EDB-FN was performed using a targeted contrast agent MT218 [ZD2-N3-Gd(DO3A)] on a 3 T MRS 3000 scanner. T1-weighted images were acquired following intravenous injection of MT218 at dose of 0.1 mmol/kg using a fast spin echo axial sequence with respiratory gating. RESULTS: Systemic administration of RGD-PEG-ECO/miR-200c nanoparticles in mice bearing orthotopic TNBC xenografts significantly suppressed tumor progression without toxic side-effects. MRMI with MT218 revealed that the treatment significantly suppressed tumor proliferation as compared to the control. MRMI also showed that the miR-200c treatment altered tumor microenvironment by reducing EDB-FN expression, as evidenced by decreased contrast enhancement in both MDA-MB-231 and Hs578T tumors. The reduction of EDB-FN was confirmed by immunohistochemistry. CONCLUSIONS: Targeted delivery of miR-200c with RGD-PEG-ECO/miR-200c nanoparticles effectively modulates tumor microenvironment and suppresses TNBC proliferation in animal models. MRMI of tumor EDB-FN expression is effective to non-invasively monitor tumor response and therapeutic efficacy of RGD-PEG-ECO/miR-200c nanoparticles in TNBC.


Asunto(s)
MicroARNs/administración & dosificación , Imagen Molecular/métodos , Nanopartículas/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Animales , Línea Celular Tumoral , Femenino , Fibronectinas/análisis , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , MicroARNs/análisis , Invasividad Neoplásica , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Haematologica ; 105(2): 338-347, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31147440

RESUMEN

Hereditary spherocytosis (HS) originates from defective anchoring of the cytoskeletal network to the transmembrane protein complexes of the red blood cell (RBC). Red cells in HS are characterized by membrane instability and reduced deformability and there is marked heterogeneity in disease severity among patients. To unravel this variability in disease severity, we analyzed blood samples from 21 HS patients with defects in ankyrin, band 3, α-spectrin or ß-spectrin using red cell indices, eosin-5-maleimide binding, microscopy, the osmotic fragility test, Percoll density gradients, vesiculation and ektacytometry to assess cell membrane stability, cellular density and deformability. Reticulocyte counts, CD71 abundance, band 4.1 a:b ratio, and glycated hemoglobin were used as markers of RBC turnover. We observed that patients with moderate/severe spherocytosis have short-living erythrocytes of low density and abnormally high intercellular heterogeneity. These cells show a prominent decrease in membrane stability and deformability and, as a consequence, are quickly removed from the circulation by the spleen. In contrast, in mild spherocytosis less pronounced reduction in deformability results in prolonged RBC lifespan and, hence, cells are subject to progressive loss of membrane. RBC from patients with mild spherocytosis thus become denser before they are taken up by the spleen. Based on our findings, we conclude that RBC membrane loss, cellular heterogeneity and density are strong markers of clinical severity in spherocytosis.


Asunto(s)
Esferocitosis Hereditaria , Ancirinas , Membrana Eritrocítica , Eritrocitos , Humanos , Recuento de Reticulocitos , Esferocitosis Hereditaria/diagnóstico
6.
J Formos Med Assoc ; 119(9): 1382-1395, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32284164

RESUMEN

BACKGROUND: Patients with different hepatitis C virus (HCV) genotype infections are associated with varying metabolic disorders. Although alteration of lipid metabolism has been confirmed as a virus-induced metabolic derangement in chronic hepatitis C patients, the impact of various HCV genotypes on hepatic cholesterol metabolism remains elusive. In this study, we thus investigated the HCV genotype-specific lipogenic and cholesterol metabolism profiles in an in vitro cell culture system. METHODS: We first conducted HCV cell culture system (HCVcc) assays by infecting Huh7.5.1 cells with multiple infection-competent HCV strains, including the genotype 2a JFH1 and JFH1-based intergenotypic recombinants 1b and 3a. We then examined the expression levels of various lipid and cholesterol-related genes. RESULTS: The data showed that infection with individual HCV genotypes exerted unique gene expression regulatory effects on lipoproteins and cholesterol metabolism genes. Of note, all HCV strains suppressed cholesterol biosynthesis in hepatocytes through downregulating the expression of HMG-CoA reductase (HMGCR) and farnesyl-diphosphate farnesyltransferase 1 (FDFT1) - two essential enzymes for cholesterol biosynthesis. These HCV-mediated inhibitory effects could be reversed by treatment with sofosbuvir, a pangenotypic NS5B inhibitor. In addition, overexpression of HCV genotype 1b, 2a or 3a core protein significantly suppressed HMGCR mRNA transcription and translation, thus diminished cellular cholesterol biosynthesis. Nonetheless, the core protein had no effect on FDFT1 expression. CONCLUSION: Although HCV infection regulates host lipid metabolism in a genotype-specific manner, its inhibition on hepatocellular cholesterogenic gene expression and total cholesterol biosynthesis is a common effect among HCV genotype 1b, 2a and 3a.


Asunto(s)
Colesterol/biosíntesis , Hepacivirus/genética , Hepatitis C Crónica/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Línea Celular , Farnesil Difosfato Farnesil Transferasa/genética , Regulación de la Expresión Génica , Genotipo , Hepatitis C Crónica/virología , Hepatocitos/virología , Humanos , Hidroximetilglutaril-CoA Reductasas/genética
7.
Cell Physiol Biochem ; 41(3): 1219-1228, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28268218

RESUMEN

BACKGROUND: Cation channels play an essential role in red blood cells (RBCs) ion homeostasis. One set of ion channels are the transient receptor potential channels of canonical type (TRPC channels). The abundance of these channels in primary erythroblasts, erythroid cell lines and RBCs was associated with an increase in intracellular Ca2+ upon stimulation with Erythropoietin (Epo). In contrast two independent studies on Epo-treated patients revealed diminished basal Ca2+ concentration or reduced phosphatidylserine exposure to the outer membrane leaflet. METHODS: To resolve the seemingly conflicting reports we challenged mature human and mouse RBCs of several genotypes with Epo and Prostaglandin E2 (PGE2) and recorded the intracellular Ca2+ content. Next Generation Sequencing was utilised to approach a molecular analysis of reticulocytes. RESULTS/CONCLUSIONS: Our results allow concluding that Epo and PGE2 regulation of the Ca2+ homeostasis is distinctly different between murine and human RBCs and that changes in intracellular Ca2+ upon Epo treatment is a primary rather than a compensatory effect. In human RBCs, Epo itself has no effect on Ca2+ fluxes but inhibits the PGE2-induced Ca2+ entry. In murine mature RBCs functional evidence indicates TRPC4/C5 mediated Ca2+ entry activated by Epo whereas PGE2 leads to a TRPC independent Ca2+ entry.


Asunto(s)
Calcio/metabolismo , Dinoprostona/farmacología , Eritrocitos/efectos de los fármacos , Eritropoyetina/farmacología , Canales Catiónicos TRPC/metabolismo , Animales , Cationes Bivalentes , Eritrocitos/citología , Eritrocitos/metabolismo , Expresión Génica , Humanos , Transporte Iónico/efectos de los fármacos , Ratones , Cultivo Primario de Células , Especificidad de la Especie , Canales Catiónicos TRPC/genética
8.
Cell Physiol Biochem ; 38(4): 1376-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27007671

RESUMEN

BACKGROUND/AIMS: The exposure of phosphatidylserine (PS) on the outer membrane leaflet of red blood cells (RBCs) serves as a signal for suicidal erythrocyte death or eryptosis, which may be of importance for cell clearance from blood circulation. PS externalisation is realised by the scramblase activated by an increase of intracellular Ca2+ content. It has been described in literature that RBCs show an increased intracellular Ca2+ content as well as PS exposure when becoming aged up to 120 days (which is their life span). However, these investigations were carried out after incubation of the RBCs for 48 h. The aim of this study was to investigate this effect after short-time incubation using a variety of stimulating substances for Ca2+ uptake and PS exposure. METHODS: We separated RBCs by age in five different fractions by centrifugation using Percoll density gradient. The intracellular Ca2+ content and the PS exposure of RBCs with different age has been investigated after treatment with lysophosphatidic acid (LPA) as well as after activation of protein kinase C (PKC) using phorbol-12 myristate-13 acetate (PMA). For positive control RBCs were treated with 4-bromo-A23187. Measurement techniques included flow cytometry and live cell imaging (fluorescence microscopy). RESULTS: The percentage of RBCs showing increased Ca2+ content as well as the PS exposure did not change significantly in dependence on cell age after short-time incubation in control experiments (without stimulating substances) or using LPA or PMA. However, we confirm findings reported that Ca2+ content and the PS exposure of RBCs increased after 48 h incubation. CONCLUSION: No significant differences of intracellular Ca2+ content and PS exposure can be seen for RBCs of different age in resting state or after stimulation of Ca2+ uptake at short-time incubation.


Asunto(s)
Eritrocitos/efectos de los fármacos , Fosfatidilserinas/farmacología , Factores de Edad , Calcio/metabolismo , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Eritrocitos/citología , Eritrocitos/metabolismo , Citometría de Flujo , Humanos , Lisofosfolípidos/farmacología , Microscopía Fluorescente , Proteína Quinasa C/metabolismo , Acetato de Tetradecanoilforbol/farmacología
9.
Genetics ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701221

RESUMEN

The current toolkit for genetic manipulation in the model animal Drosophila melanogaster is extensive and versatile but not without its limitations. Here, we report a powerful and heritable method to knockdown gene expression in D. melanogaster using the self-cleaving N79 hammerhead ribozyme, a modification of a naturally occurring ribozyme found in the parasite Schistosoma mansoni. A 111 bp ribozyme cassette, consisting of the N79 ribozyme surrounded by insulating spacer sequences, was inserted into four independent long noncoding RNA genes as well as the male-specific splice variant of doublesex using scarless CRISPR/Cas9-mediated genome editing. Ribozyme-induced RNA cleavage resulted in robust destruction of 3' fragments typically exceeding 90%. Single molecule RNA fluorescence in situ hybridization results suggest that cleavage and destruction can even occur for nascent transcribing RNAs. Knockdown was highly specific to the targeted RNA, with no adverse effects observed in neighboring genes or the other splice variants. To control for potential effects produced by the simple insertion of 111 nucleotides into genes, we tested multiple catalytically inactive ribozyme variants and found that a variant with scrambled N79 sequence best recapitulated natural RNA levels. Thus, self-cleaving ribozymes offer a novel approach for powerful gene knockdown in Drosophila, with potential applications for the study of noncoding RNAs, nuclear-localized RNAs, and specific splice variants of protein-coding genes.

10.
Blood Adv ; 7(6): 1033-1039, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36490356

RESUMEN

For some molecular players in red blood cells (RBCs), the functional indications and molecular evidence are discrepant. One such protein is transient receptor potential channel of canonical subfamily, member 6 (TRPC6). Transcriptome analysis of reticulocytes revealed the presence of TRPC6 in mouse RBCs and its absence in human RBCs. We transfused TRPC6 knockout RBCs into wild-type mice and performed functional tests. We observed the "rescue" of TRPC6 within 10 days; however, the "rescue" was slower in splenectomized mice. The latter finding led us to mimic the mechanical challenge with the cantilever of an atomic force microscope and simultaneously carry out imaging by confocal (3D) microscopy. We observed the strong interaction of RBCs with the opposed surface at around 200 pN and the formation of tethers. The results of both the transfusion experiments and the atomic force spectroscopy suggest mechanically stimulated protein transfer to RBCs as a protein source in the absence of the translational machinery. This protein transfer mechanism has the potential to be utilized in therapeutic contexts, especially for hereditary diseases involving RBCs, such as hereditary xerocytosis or Gárdos channelopathy.


Asunto(s)
Anemia Hemolítica Congénita , Eritrocitos , Animales , Humanos , Ratones , Anemia Hemolítica Congénita/metabolismo , Transfusión Sanguínea , Eritrocitos/metabolismo , Hidropesía Fetal/metabolismo , Canal Catiónico TRPC6/metabolismo
11.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106011

RESUMEN

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of E. coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37 °C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65 °C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.

12.
J Mol Biol ; 434(18): 167665, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35659535

RESUMEN

Recent advances in interrogating RNA folding dynamics have shown the classical model of RNA folding to be incomplete. Here, we pose three prominent questions for the field that are at the forefront of our understanding of the importance of RNA folding dynamics for RNA function. The first centers on the most appropriate biophysical framework to describe changes to the RNA folding energy landscape that a growing RNA chain encounters during transcriptional elongation. The second focuses on the potential ubiquity of strand displacement - a process by which RNA can rapidly change conformations - and how this process may be generally present in broad classes of seemingly different RNAs. The third raises questions about the potential importance and roles of cellular protein factors in RNA conformational switching. Answers to these questions will greatly improve our fundamental knowledge of RNA folding and function, drive biotechnological advances that utilize engineered RNAs, and potentially point to new areas of biology yet to be discovered.


Asunto(s)
Pliegue del ARN , ARN , Cinética
13.
Annu Rev Chem Biomol Eng ; 12: 263-286, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33900805

RESUMEN

RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems to solve pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems.


Asunto(s)
Ingeniería Genética , ARN , Salud Pública , ARN/genética , Biología Sintética
14.
Blood Adv ; 5(17): 3303-3308, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34468723

RESUMEN

In patients with Gárdos channelopathy (p.R352H), an increased concentration of intracellular Ca2+ was previously reported. This is a surprising finding because the Gárdos channel (KCa3.1) is a K+ channel. Here, we confirm the increased intracellular Ca2+ for patients with the KCa3.1 mutation p.S314P. Furthermore, we provide the concept of KCa3.1 activity resulting in a flickering of red blood cell (RBC) membranepotential, which activates the CaV2.1 channel allowing Ca2+ to enter the RBC. Activity of the nonselective cation channel Piezo1 modulates the aforementioned interplay in away that a closed Piezo1 is in favor of the KCa3.1-CaV2.1 interaction. In contrast, Piezo1 openings compromise the membrane potential flickering, thus limiting the activity of CaV2.1. With the compound NS309, we mimic a gain-of-function mutation of KCa3.1. Assessing the RBC Ca2+ response by Fluo-4-based flow cytometry and by measuring the membrane potential using the Macey-Bennekou-Egée method, we provide data that support the concept of the KCa3.1/CaV2.1/Piezo1 interplay as a partial explanation for an increased number of high Ca2+ RBCs. With the pharmacological inhibition of KCa3.1 (TRAM34 and Senicapoc), CaV2.1 (ω-agatoxin TK), and Piezo1 (GsMTx-4), we could project the NS309 behavior of healthy RBCs to the RBCs of Gárdos channelopathy patients.


Asunto(s)
Canalopatías , Agatoxinas , Calcio/metabolismo , Eritrocitos/metabolismo , Humanos , Canales Iónicos/genética
15.
Cells ; 10(2)2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672679

RESUMEN

(1) Background: It is known that sickle cells contain a higher amount of Ca2+ compared to healthy red blood cells (RBCs). The increased Ca2+ is associated with the most severe symptom of sickle cell disease (SCD), the vaso-occlusive crisis (VOC). The Ca2+ entry pathway received the name of Psickle but its molecular identity remains only partly resolved. We aimed to map the involved Ca2+ signaling to provide putative pharmacological targets for treatment. (2) Methods: The main technique applied was Ca2+ imaging of RBCs from healthy donors, SCD patients and a number of transgenic mouse models in comparison to wild-type mice. Life-cell Ca2+ imaging was applied to monitor responses to pharmacological targeting of the elements of signaling cascades. Infection as a trigger of VOC was imitated by stimulation of RBCs with lysophosphatidic acid (LPA). These measurements were complemented with biochemical assays. (3) Results: Ca2+ entry into SCD RBCs in response to LPA stimulation exceeded that of healthy donors. LPA receptor 4 levels were increased in SCD RBCs. Their activation was followed by the activation of Gi protein, which in turn triggered opening of TRPC6 and CaV2.1 channels via a protein kinase Cα and a MAP kinase pathway, respectively. (4) Conclusions: We found a new Ca2+ signaling cascade that is increased in SCD patients and identified new pharmacological targets that might be promising in addressing the most severe symptom of SCD, the VOC.


Asunto(s)
Anemia de Células Falciformes/sangre , Señalización del Calcio , Eritrocitos/metabolismo , Lisofosfolípidos/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo N/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Modelos Biológicos , Proteína Quinasa C/metabolismo , Canal Catiónico TRPC6/metabolismo , Donantes de Tejidos
16.
Acta Physiol (Oxf) ; 232(3): e13647, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33729672

RESUMEN

AIMS: Total haemoglobin mass (tot-Hb) increases during high-altitude acclimatization. Normalization of tot-Hb upon descent is thought to occur via neocytolysis, the selective destruction of newly formed erythrocytes. Because convincing experimental proof of neocytolysis is lacking, we performed a prospective study on erythrocyte survival after a stay at the Jungfraujoch Research Station (JFJRS; 3450 m). METHODS: Newly formed erythrocytes of 12 male subjects (mean age 23.3 years) were age cohort labelled in normoxia (110 m) and during a 19-day high-altitude sojourn by ingestion of 13 C2- and 15 N-labelled glycine respectively. Elimination dynamics for erythrocytes produced in normoxia and at high altitude were measured by isotope ratio mass spectrometry of haem, by determining tot-Hb, reticulocyte counts, erythrocyte membrane protein 4.1a/4.1b ratio and by mathematical modelling. RESULTS: Tot-Hb increased by 4.7% ± 2.7% at high altitude and returned to pre-altitude values within 11 days after descent. Elimination of 13 C- (normoxia) and 15 N- (high altitude) labelled erythrocytes was not different. Erythropoietin levels and counts of CD71-positive reticulocytes decreased rapidly after descent. The band 4.1a/4.1b ratio decreased at altitude and remained low for 3-4 days after descent and normalized slowly. There was no indication of haemolysis. CONCLUSION: We confirm a rapid normalization of tot-Hb upon descent. Based on the lack of accelerated removal of age cohorts of erythrocytes labelled at high altitude, on patterns of changes in reticulocyte counts and of the band 4.1a/4.1b ratio and on modelling, this decrease did not occur via neocytolysis, but by a reduced rate of erythropoiesis along with normal clearance of senescent erythrocytes.


Asunto(s)
Altitud , Eritropoyetina , Adulto , Eritrocitos , Humanos , Masculino , Estudios Prospectivos , Reticulocitos , Adulto Joven
17.
mBio ; 10(4)2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31363036

RESUMEN

Hepatitis C virus (HCV) harnesses host dependencies to infect human hepatocytes. We previously identified a pivotal role of IκB kinase α (IKK-α) in regulating cellular lipogenesis and HCV assembly. In this study, we defined and characterized NF-κB-inducing kinase (NIK) as an IKK-α upstream serine/threonine kinase in IKK-α-mediated proviral effects and the mechanism whereby HCV exploits this innate pathway to its advantage. We manipulated NIK expression in Huh7.5.1 cells through loss- and gain-of-function approaches and examined the effects on IKK-α activation, cellular lipid metabolism, and viral assembly. We demonstrated that NIK interacts with IKK-α to form a kinase complex in association with the stress granules, in which IKK-α is phosphorylated upon HCV infection. Depletion of NIK significantly diminished cytosolic lipid droplet content and impaired HCV particle production. NIK overexpression enhanced HCV assembly, and this process was abrogated in cells deprived of IKK-α, suggesting that NIK acts upstream of IKK-α. NIK abundance was increased in HCV-infected hepatocytes, liver tissues from Alb-uPA/Scid mice engrafted with human hepatocytes, and chronic hepatitis C patients. NIK mRNA contains an miR-122 seed sequence binding site in the 3' untranslated region (UTR). miR-122 mimic and hairpin inhibitor directly affected NIK levels. In our hepatic models, miR-122 levels were significantly reduced by HCV infection. We demonstrated that HNF4A, a known transcriptional regulator of pri-miR-122, was downregulated by HCV infection. NIK represents a bona fide target of miR-122 whose transcription is downregulated by HCV through reduced HNF4A expression. This effect, together with the sequestering of miR-122 by HCV replication, results in "derepression" of NIK expression to deregulate lipid metabolism.IMPORTANCE Chronic hepatitis C virus (HCV) infection is a major global public health problem. Infection often leads to severe liver injury that may progress to cirrhosis, hepatocellular carcinoma, and death. HCV coopts cellular machineries for propagation and triggers pathological processes in the liver. We previously identified a pivotal role of IKK-α in regulating cellular lipid metabolism and HCV assembly. In this study, we characterized NIK as acting upstream of IKK-α and characterized how HCV exploits this innate pathway to its advantage. Through extensive mechanistic studies, we demonstrated that NIK is a direct target of miR-122, which is regulated at the transcription level by HNF4A, a hepatocyte-specific transcription factor. We show in HCV infection that NIK expression is increased while both HNF4A and miR-122 levels are decreased. NIK represents an important host dependency that links HCV assembly, hepatic lipogenesis, and miRNA biology.


Asunto(s)
Hepacivirus/patogenicidad , Hepatitis C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular , Hepatitis C/genética , Humanos , Lipogénesis/genética , Lipogénesis/fisiología , Hígado/metabolismo , Hígado/virología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Quinasa de Factor Nuclear kappa B
18.
Virol Sin ; 34(2): 197-210, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30456659

RESUMEN

Cellular microRNAs (miRNAs) have been shown to modulate HCV infection via directly acting on the viral genome or indirectly through targeting the virus-associated host factors. Recently we generated a comprehensive map of HCV-miRNA interactions through genome-wide miRNA functional screens and transcriptomics analyses. Many previously unappreciated cellular miRNAs were identified to be involved in HCV infection, including miR-135a, a human cancer-related miRNA. In the present study, we investigated the role of miR-135a in regulating HCV life cycle and showed that it preferentially enhances viral genome replication. Bioinformatics-based integrative analyses and subsequent functional assays revealed three antiviral host factors, including receptor interacting serine/threonine kinase 2 (RIPK2), myeloid differentiation primary response 88 (MYD88), and C-X-C motif chemokine ligand 12 (CXCL12), as bona fide targets of miR-135a. These genes have been shown to inhibit HCV infection at the RNA replication stage. Our data demonstrated that repression of key host restriction factors mediated the proviral effect of miR-135a on HCV propagation. In addition, miR-135a hepatic abundance is upregulated by HCV infection in both cultured hepatocytes and human liver, likely mediating a more favorable environment for viral replication and possibly contributing to HCV-induced liver malignancy. These results provide novel insights into HCV-host interactions and unveil molecular pathways linking miRNA biology to HCV pathogenesis.


Asunto(s)
Genoma Viral , Hepacivirus/patogenicidad , MicroARNs/genética , Replicación Viral , Quimiocina CXCL12/genética , Regulación hacia Abajo , Hepacivirus/fisiología , Hepatitis C/patología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Humanos , Hígado/virología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/virología , Factor 88 de Diferenciación Mieloide/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Activación Transcripcional
19.
Front Physiol ; 10: 753, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275166

RESUMEN

Very young red blood cells, namely reticulocytes, can be quite easily recognized and labeled by cluster of differentiation antibodies (CD71, transferrin receptor) or by staining remnant RNA with thiazol orange. In contrast, age specific erythrocyte labeling is more difficult in later periods of their life time. While erythrocytes contain band 4.1 protein, a molecular clock, so far it has not been possible to read this clock on individual cells. One concept to track erythrocytes during their life time is to mark them when they are young, either directly in vivo or ex vivo followed by a transfusion. Several methods like biotinylation, use of isotopes or fluorescent labeling have proved to be useful experimental approaches but also have several inherent disadvantages. Genetic engineering of mice provides additional options to express fluorescent proteins in erythrocytes. To allow co-staining with popular green fluorescent dyes like Fluo-4 or other fluorescein-based dyes, we bred a mouse line expressing a tandem red fluorescent protein (tdRFP). Within this Brief Research Report, we provide the initial characterisation of this mouse line and show application examples ranging from transfusion experiments and intravital microscopy to multicolour flow cytometry and confocal imaging. We provide a versatile new tool for erythrocyte research and discuss a range of experimental opportunities to study membrane processes and other aspects of erythrocyte development and aging with help of these animals.

20.
Front Physiol ; 10: 514, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139090

RESUMEN

Glutaraldehyde is a well-known substance used in biomedical research to fix cells. Since hemolytic anemias are often associated with red blood cell shape changes deviating from the biconcave disk shape, conservation of these shapes for imaging in general and 3D-imaging in particular, like confocal microscopy, scanning electron microscopy or scanning probe microscopy is a common desire. Along with the fixation comes an increase in the stiffness of the cells. In the context of red blood cells this increased rigidity is often used to mimic malaria infected red blood cells because they are also stiffer than healthy red blood cells. However, the use of glutaraldehyde is associated with numerous pitfalls: (i) while the increase in rigidity by an application of increasing concentrations of glutaraldehyde is an analog process, the fixation is a rather digital event (all or none); (ii) addition of glutaraldehyde massively changes osmolality in a concentration dependent manner and hence cell shapes can be distorted; (iii) glutaraldehyde batches differ in their properties especially in the ratio of monomers and polymers; (iv) handling pitfalls, like inducing shear artifacts of red blood cell shapes or cell density changes that needs to be considered, e.g., when working with cells in flow; (v) staining glutaraldehyde treated red blood cells need different approaches compared to living cells, for instance, because glutaraldehyde itself induces a strong fluorescence. Within this paper we provide documentation about the subtle use of glutaraldehyde on healthy and pathologic red blood cells and how to deal with or circumvent pitfalls.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda