Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Exp Physiol ; 109(7): 1099-1108, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763158

RESUMEN

The premise of research in human physiology is to explore a multifaceted system whilst identifying one or a few outcomes of interest. Therefore, the control of potentially confounding variables requires careful thought regarding the extent of control and complexity of standardisation. One common factor to control prior to testing is diet, as food and fluid provision may deviate from participants' habitual diets, yet a self-report and replication method can be flawed by under-reporting. Researchers may also need to consider standardisation of physical activity, whether it be through familiarisation trials, wash-out periods, or guidance on levels of physical activity to be achieved before trials. In terms of pharmacological agents, the ethical implications of standardisation require researchers to carefully consider how medications, caffeine consumption and oral contraceptive prescriptions may affect the study. For research in females, it should be considered whether standardisation between- or within-participants in regards to menstrual cycle phase is most relevant. The timing of measurements relative to various other daily events is relevant to all physiological research and so it can be important to standardise when measurements are made. This review summarises the areas of standardisation which we hope will be considered useful to anyone involved in human physiology research, including when and how one can apply standardisation to various contexts.


Asunto(s)
Fisiología , Humanos , Fisiología/normas , Fisiología/métodos , Proyectos de Investigación/normas , Femenino , Ciclo Menstrual/fisiología
2.
Int J Sport Nutr Exerc Metab ; 34(4): 242-250, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763509

RESUMEN

The premise of research in human physiology is to explore a multifaceted system whilst identifying one or a few outcomes of interest. Therefore, the control of potentially confounding variables requires careful thought regarding the extent of control and complexity of standardisation. One common factor to control prior to testing is diet, as food and fluid provision may deviate from participants' habitual diets, yet a self-report and replication method can be flawed by under-reporting. Researchers may also need to consider standardisation of physical activity, whether it be through familiarisation trials, wash-out periods, or guidance on levels of physical activity to be achieved before trials. In terms of pharmacological agents, the ethical implications of standardisation require researchers to carefully consider how medications, caffeine consumption and oral contraceptive prescriptions may affect the study. For research in females, it should be considered whether standardisation between- or within-participants in regards to menstrual cycle phase is most relevant. The timing of measurements relative to various other daily events is relevant to all physiological research and so it can be important to standardise when measurements are made. This review summarises the areas of standardisation which we hope will be considered useful to anyone involved in human physiology research, including when and how one can apply standardisation to various contexts.


Asunto(s)
Proyectos de Investigación , Femenino , Humanos , Investigación Biomédica/normas , Investigación Biomédica/ética , Investigación Biomédica/métodos , Cafeína/administración & dosificación , Cafeína/farmacología , Dieta , Ejercicio Físico , Ciclo Menstrual , Proyectos de Investigación/normas , Masculino
3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686322

RESUMEN

Although skeletal muscle (hSKM) has been proven to be actively involved in Amyotrophic Lateral Sclerosis (ALS) neuromuscular junction (NMJ) dysfunction, it is rarely considered as a pharmacological target in preclinical drug discovery. This project investigated how improving ALS hSKM viability and function effects NMJ integrity. Phenotypic ALS NMJ human-on-a-chip models developed from patient-derived induced pluripotent stem cells (iPSCs) were used to study the effect of hSKM-specific creatine treatment on clinically relevant functional ALS NMJ parameters, such as NMJ numbers, fidelity, stability, and fatigue index. Results indicated comparatively enhanced NMJ numbers, fidelity, and stability, as well as reduced fatigue index, across all hSKM-specific creatine-treated systems. Immunocytochemical analysis of the NMJs also revealed improved post-synaptic nicotinic Acetylcholine receptor (AChR) clustering and cluster size in systems supplemented with creatine relative to the un-dosed control. This work strongly suggests hSKM as a therapeutic target in ALS drug discovery. It also demonstrates the need to consider all tissues involved in multi-systemic diseases, such as ALS, in drug discovery efforts. Finally, this work further establishes the BioMEMs NMJ platform as an effective means of performing mutation-specific drug screening, which is a step towards personalized medicine for rare diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Creatina , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Creatina/farmacología , Creatina/uso terapéutico , Fatiga Muscular , Músculo Esquelético , Unión Neuromuscular
4.
Annu Rev Pharmacol Toxicol ; 58: 65-82, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-29029591

RESUMEN

Enhancing the early detection of new therapies that are likely to carry a safety liability in the context of the intended patient population would provide a major advance in drug discovery. Microphysiological systems (MPS) technology offers an opportunity to support enhanced preclinical to clinical translation through the generation of higher-quality preclinical physiological data. In this review, we highlight this technological opportunity by focusing on key target organs associated with drug safety and metabolism. By focusing on MPS models that have been developed for these organs, alongside other relevant in vitro models, we review the current state of the art and the challenges that still need to be overcome to ensure application of this technology in enhancing drug discovery.


Asunto(s)
Descubrimiento de Drogas/métodos , Preparaciones Farmacéuticas/química , Animales , Evaluación Preclínica de Medicamentos/métodos , Humanos
5.
Biotechnol Bioeng ; 117(3): 736-747, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31758543

RESUMEN

In vitro systems that mimic organ functionality have become increasingly important tools in drug development studies. Systems that measure the functional properties of skeletal muscle are beneficial to compound screening studies and also for integration into multiorgan devices. To date, no studies have investigated human skeletal muscle responses to drug treatments at the single myotube level in vitro. This report details a microscale cantilever chip-based assay system for culturing individual human myotubes. The cantilevers, along with a laser and photo-detector system, enable measurement of myotube contractions in response to broad-field electrical stimulation. This system was used to obtain baseline functional parameters for untreated human myotubes, including peak contractile force and time-to-fatigue data. The cultured myotubes were then treated with known myotoxic compounds and the resulting functional changes were compared to baseline measurements as well as known physiological responses in vivo. The collected data demonstrate the system's capacity for screening direct effects of compound action on individual human skeletal myotubes in a reliable, reproducible, and noninvasive manner. Furthermore, it has the potential to be utilized for high-content screening, disease modeling, and exercise studies of human skeletal muscle performance utilizing iPSCs derived from specific patient populations such as the muscular dystrophies.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Modelos Biológicos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético , Atorvastatina/toxicidad , Células Cultivadas , Doxorrubicina/toxicidad , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Distrofias Musculares/metabolismo
6.
J Neurosci ; 38(35): 7683-7700, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30054395

RESUMEN

Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.


Asunto(s)
Daño del ADN/fisiología , Neuronas Motoras/enzimología , Proteína-Arginina N-Metiltransferasas/fisiología , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN , Contracción Isométrica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Musculares/enzimología , Células Musculares/fisiología , Unión Neuromuscular/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/deficiencia , Proteína-Arginina N-Metiltransferasas/genética , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Reflejo Anormal , Prueba de Desempeño de Rotación con Aceleración Constante , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo
7.
Adv Funct Mater ; 29(8)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35586798

RESUMEN

The goal of human-on-a-chip systems is to capture multi-organ complexity and predict the human response to compounds within physiologically relevant platforms. The generation and characterization of such systems is currently a focal point of research given the long-standing inadequacies of conventional techniques for predicting human outcome. Functional systems can measure and quantify key cellular mechanisms that correlate with the physiological status of a tissue, and can be used to evaluate therapeutic challenges utilizing many of the same endpoints used in animal experiments or clinical trials. Culturing multiple organ compartments in a platform creates a more physiologic environment (organ-organ communication). Here is reported a human 4-organ system composed of heart, liver, skeletal muscle and nervous system modules that maintains cellular viability and function over 28 days in serum-free conditions using a pumpless system. The integration of non-invasive electrical evaluation of neurons and cardiac cells and mechanical determination of cardiac and skeletal muscle contraction allows the monitoring of cellular function especially for chronic toxicity studies in vitro. The 28 day period is the minimum timeframe for animal studies to evaluate repeat dose toxicity. This technology could be a relevant alternative to animal testing by monitoring multi-organ function upon long term chemical exposure.

8.
Metab Brain Dis ; 31(3): 711-5, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26744018

RESUMEN

Those at risk for Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability in the years preceding diagnosis. Our previous work with the rTg(TauP301L)4510 tau mouse model of AD suggests that this increase in hyperexcitability is likely mediated by an increase in depolarization-evoked glutamate release and a decrease in glutamate uptake, alterations of which correlate with learning and memory deficits. Treatment with riluzole restored glutamate regulation and rescued memory deficits in the TauP301L model. Here, we used enzyme-based ceramic microelectrode array technology to measure real-time phasic glutamate release and uptake events in the hippocampal subregions of TauP301L mice. For the first time, we demonstrate that perturbations in glutamate transients (rapid, spontaneous bursts of glutamate) exist in a tau mouse model of AD mouse model and that riluzole mitigates these alterations. These results help to inform our understanding of how glutamate signaling is altered in the disease process and also suggest that riluzole may serve as a clinically applicable therapeutic approach in AD.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Riluzol/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Fármacos Neuroprotectores/uso terapéutico , Riluzol/uso terapéutico
9.
Altern Lab Anim ; 44(5): 469-478, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27805830

RESUMEN

Body-on-a-chip systems replicate the size relationships of organs, blood distribution and blood flow, in accordance with human physiology. When operated with tissues derived from human cell sources, these systems are capable of simulating human metabolism, including the conversion of a prodrug to its effective metabolite, as well as its subsequent therapeutic actions and toxic side-effects. The system also permits the measurement of human tissue electrical and mechanical reactions, which provide a measure of functional response. Since these devices can be operated with human tissue samples or with in vitro tissues derived from induced pluripotent stem cells (iPS), they can play a significant role in determining the success of new pharmaceuticals, without resorting to the use of animals. By providing a platform for testing in the context of human metabolism, as opposed to animal models, the systems have the potential to eliminate the use of animals in preclinical trials. This article will review progress made and work achieved as a direct result of the 2015 Lush Science Prize in support of animal-free testing.


Asunto(s)
Alternativas a las Pruebas en Animales/instrumentación , Dispositivos Laboratorio en un Chip , Células CACO-2 , Supervivencia Celular , Técnicas de Cocultivo , Células HT29 , Humanos , Farmacocinética , Pruebas de Toxicidad
10.
J Neurochem ; 135(2): 381-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26146790

RESUMEN

Hyperexcitability of the hippocampus is a commonly observed phenomenon in the years preceding a diagnosis of Alzheimer's disease (AD). Our previous work suggests a dysregulation in glutamate neurotransmission may mediate this hyperexcitability, and glutamate dysregulation correlates with cognitive deficits in the rTg(TauP301L)4510 mouse model of AD. To determine whether improving glutamate regulation would attenuate cognitive deficits and AD-related pathology, TauP301L mice were treated with riluzole (~ 12.5 mg/kg/day p.o.), an FDA-approved drug for amyotrophic lateral sclerosis that lowers extracellular glutamate levels. Riluzole-treated TauP301L mice exhibited improved performance in the water radial arm maze and the Morris water maze, associated with a decrease in glutamate release and an increase in glutamate uptake in the dentate gyrus, cornu ammonis 3 (CA3), and cornu ammonis 1 (CA1) regions of the hippocampus. Riluzole also attenuated the TauP301L-mediated increase in hippocampal vesicular glutamate transporter 1, which packages glutamate into vesicles and influences glutamate release; and the TauP301L-mediated decrease in hippocampal glutamate transporter 1, the major transporter responsible for removing glutamate from the extracellular space. The TauP301L-mediated reduction in PSD-95 expression, a marker of excitatory synapses in the hippocampus, was also rescued by riluzole. Riluzole treatment reduced total levels of tau, as well as the pathological phosphorylation and conformational changes in tau associated with the P301L mutation. These findings open new opportunities for the development of clinically applicable therapeutic approaches to regulate glutamate in vulnerable circuits for those at risk for the development of AD.


Asunto(s)
Trastornos del Conocimiento/prevención & control , Trastornos del Conocimiento/psicología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Fármacos Neuroprotectores/farmacología , Riluzol/farmacología , Tauopatías/prevención & control , Tauopatías/psicología , Proteínas tau/biosíntesis , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/psicología , Animales , Química Encefálica/efectos de los fármacos , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Sinapsis/efectos de los fármacos , Sinapsis/patología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
12.
Biomedicines ; 12(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38672210

RESUMEN

In vitro culture longevity has long been a concern for disease modeling and drug testing when using contractable cells. The dynamic nature of certain cells, such as skeletal muscle, contributes to cell surface release, which limits the system's ability to conduct long-term studies. This study hypothesized that regulating the extracellular matrix (ECM) dynamics should be able to prolong cell attachment on a culture surface. Human induced pluripotent stem cell (iPSC)-derived skeletal muscle (SKM) culture was utilized to test this hypothesis due to its forceful contractions in mature muscle culture, which can cause cell detachment. By specifically inhibiting matrix metalloproteinases (MMPs) that work to digest components of the ECM, it was shown that the SKM culture remained adhered for longer periods of time, up to 80 days. Functional testing of myofibers indicated that cells treated with the MMP inhibitors, tempol, and doxycycline, displayed a significantly reduced fatigue index, although the fidelity was not affected, while those treated with the MMP inducer, PMA, indicated a premature detachment and increased fatigue index. The MMP-modulating activity by the inhibitors and inducer was further validated by gel zymography analysis, where the MMP inhibitor showed minimally active MMPs, while the inducer-treated cells indicated high MMP activity. These data support the hypotheses that regulating the ECM dynamics can help maximize in vitro myotube longevity. This proof-of-principle strategy would benefit the modeling of diseases that require a long time to develop and the evaluation of chronic effects of potential therapeutics.

13.
Lab Chip ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957150

RESUMEN

This critical review aims to highlight how modeling of the immune response has adapted over time to utilize microphysiological systems. Topics covered here will discuss the integral components of the immune system in various human body systems, and how these interactions are modeled using these systems. Through the use of microphysiological systems, we have not only expanded on foundations of basic immune cell information, but have also gleaned insight on how immune cells work both independently and collaboratively within an entire human body system.

14.
Res Sq ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38826367

RESUMEN

Preclinical methods are needed for screening potential Alzheimer's disease (AD) therapeutics that recapitulate phenotypes found in the Mild Cognitive Impairment (MCI) stage or even before this stage of the disease. This would require a phenotypic system that reproduces cognitive deficits without significant neuronal cell death to mimic the clinical manifestations of AD during these stages. A potential functional parameter to be monitored is long-term potentiation (LTP), which is a correlate of learning and memory, that would be one of the first functions effected by AD onset. Mature human iPSC-derived cortical neurons and primary astrocytes were co-cultured on microelectrode arrays (MEA) where surface chemistry was utilized to create circuit patterns connecting two adjacent electrodes to model LTP function. LTP maintenance was significantly reduced in the presence of Amyloid-Beta 42 (Aß42) oligomers compared to the controls, however, co-treatment with AD therapeutics (Donepezil, Memantine, Rolipram and Saracatinib) corrected Aß42 induced LTP impairment. The results presented here illustrate the significance of the system as a validated platform that can be utilized to model and study MCI AD pathology, and potentially for the pre-MCI phase before the occurrence of significant cell death. It also has the potential to become an ideal platform for high content therapeutic screening for other neurodegenerative diseases.

15.
Lab Chip ; 24(5): 1076-1087, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38372151

RESUMEN

Limitations with cell cultures and experimental animal-based studies have had the scientific and industrial communities searching for new approaches that can provide reliable human models for applications such as drug development, toxicological assessment, and in vitro pre-clinical evaluation. This has resulted in the development of microfluidic-based cultures that may better represent organs and organ systems in vivo than conventional monolayer cell cultures. Although there is considerable interest from industry and regulatory bodies in this technology, several challenges need to be addressed for it to reach its full potential. Among those is a lack of guidelines and standards. Therefore, a multidisciplinary team of stakeholders was formed, with members from the US Food and Drug Administration (FDA), the National Institute of Standards and Technology (NIST), European Union, academia, and industry, to provide a framework for future development of guidelines/standards governing engineering concepts of organ-on-a-chip models. The result of this work is presented here for interested parties, stakeholders, and other standards development organizations (SDOs) to foster further discussion and enhance the impact and benefits of these efforts.


Asunto(s)
Microfluídica , Sistemas Microfisiológicos , Animales , Humanos , Microfluídica/métodos , Técnicas de Cultivo de Célula , Desarrollo de Medicamentos , Estándares de Referencia , Dispositivos Laboratorio en un Chip
16.
ACS Biomater Sci Eng ; 9(8): 4698-4708, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37462389

RESUMEN

Microcantilever platforms are functional models for studying skeletal muscle force dynamics in vitro. However, the contractile force generated by the myotubes can cause them to detach from the cantilevers, especially during long-term experiments, thus impeding the chronic investigations of skeletal muscles for drug efficacy and toxicity. To improve the integration of myotubes with microcantilevers, we drew inspiration from the elastomeric proteins, elastin and resilin, that are present in the animal and insect worlds, respectively. The spring action of these proteins plays a critical role in force dampening in vivo. In animals, elastin is present in the collagenous matrix of the tendon which is the attachment point of muscles to bones. The tendon microenvironment consists of elastin, collagen, and an aqueous jelly-like mass of proteoglycans. In an attempt to mimic this tendon microenvironment, elastin, collagen, heparan sulfate proteoglycan, and hyaluronic acid were deposited on a positively charged silane substrate. This enabled the long-term survival of mechanically active myotubes on glass and silicon microcantilevers for over 28 days. The skeletal muscle cultures were derived from both primary and induced pluripotent stem cell (iPSC)-derived human skeletal muscles. Both types of myoblasts formed myotubes which survived for five weeks. Primary skeletal muscles and iPSC-derived skeletal muscles also showed a similar trend in fatigue index values. Upon integration with the microcantilever system, the primary muscle and iPSC-derived myotubes were tested successively over a one month period, thus paving the way for long-term chronic experiments on these systems for both drug efficacy and toxicity studies.


Asunto(s)
Elastina , Longevidad , Animales , Humanos , Músculo Esquelético , Colágeno , Tendones
17.
Bio Protoc ; 13(18): e4819, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37753463

RESUMEN

Dietary saturated fatty acids (SFAs) are upregulated in the blood circulation following digestion. A variety of circulating lipid species have been implicated in metabolic and inflammatory diseases; however, due to the extreme variability in serum or plasma lipid concentrations found in human studies, established reference ranges are still lacking, in addition to lipid specificity and diagnostic biomarkers. Mass spectrometry is widely used for identification of lipid species in the plasma, and there are many differences in sample extraction methods within the literature. We used ultra-high performance liquid chromatography (UPLC) coupled to a high-resolution hybrid triple quadrupole-time-of-flight (QToF) mass spectrometry (MS) to compare relative peak abundance of specific lipid species within the following lipid classes: free fatty acids (FFAs), triglycerides (TAGs), phosphatidylcholines (PCs), and sphingolipids (SGs), in the plasma of mice fed a standard chow (SC; low in SFAs) or ketogenic diet (KD; high in SFAs) for two weeks. In this protocol, we used Principal Component Analysis (PCA) and R to visualize how individual mice clustered together according to their diet, and we found that KD-fed mice displayed unique blood profiles for many lipid species identified within each lipid class compared to SC-fed mice. We conclude that two weeks of KD feeding is sufficient to significantly alter circulating lipids, with PCs being the most altered lipid class, followed by SGs, TAGs, and FFAs, including palmitic acid (PA) and PA-saturated lipids. This protocol is needed to advance knowledge on the impact that SFA-enriched diets have on concentrations of specific lipids in the blood that are known to be associated with metabolic and inflammatory diseases. Key features • Analysis of relative plasma lipid concentrations from mice on different diets using R. • Lipidomics data collected via ultra-high performance liquid chromatography (UPLC) coupled to a high-resolution hybrid triple quadrupole-time-of-flight (QToF) mass spectrometry (MS). • Allows for a comprehensive comparison of diet-dependent plasma lipid profiles, including a variety of specific lipid species within several different lipid classes. • Accumulation of certain free fatty acids, phosphatidylcholines, triglycerides, and sphingolipids are associated with metabolic and inflammatory diseases, and plasma concentrations may be clinically useful.

19.
Sci Rep ; 13(1): 10509, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380653

RESUMEN

A functional, multi-organ, serum-free system was developed for the culture of P. falciparum in an attempt to establish innovative platforms for therapeutic drug development. It contains 4 human organ constructs including hepatocytes, splenocytes, endothelial cells, as well as recirculating red blood cells which allow for infection with the parasite. Two strains of P. falciparum were used: the 3D7 strain, which is sensitive to chloroquine; and the W2 strain, which is resistant to chloroquine. The maintenance of functional cells was successfully demonstrated both in healthy and diseased conditions for 7 days in the recirculating microfluidic model. To demonstrate an effective platform for therapeutic development, systems infected with the 3D7 strain were treated with chloroquine which significantly decreased parasitemia, with recrudescence observed after 5 days. Conversely, when the W2 systems were dosed with chloroquine, parasitemia levels were moderately decreased when compared to the 3D7 model. The system also allows for the concurrent evaluation of off-target toxicity for the anti-malarial treatment in a dose dependent manner which indicates this model could be utilized for therapeutic index determination. The work described here establishes a new approach to the evaluation of anti-malarial therapeutics in a realistic human model with recirculating blood cells for 7 days.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Células Endoteliales , Parasitemia/tratamiento farmacológico , Malaria/tratamiento farmacológico , Cloroquina/farmacología , Malaria Falciparum/tratamiento farmacológico , Dispositivos Laboratorio en un Chip
20.
Adv Biol (Weinh) ; : e2300276, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37675827

RESUMEN

Opioid overdose is the leading cause of drug overdose lethality, posing an urgent need for investigation. The key brain region for inspiratory rhythm regulation and opioid-induced respiratory depression (OIRD) is the preBötzinger Complex (preBötC) and current knowledge has mainly been obtained from animal systems. This study aims to establish a protocol to generate human preBötC neurons from induced pluripotent cells (iPSCs) and develop an opioid overdose and recovery model utilizing these iPSC-preBötC neurons. A de novo protocol to differentiate preBötC-like neurons from human iPSCs is established. These neurons express essential preBötC markers analyzed by immunocytochemistry and demonstrate expected electrophysiological responses to preBötC modulators analyzed by patch clamp electrophysiology. The correlation of the specific biomarkers and function analysis strongly suggests a preBötC-like phenotype. Moreover, the dose-dependent inhibition of these neurons' activity is demonstrated for four different opioids with identified IC50's comparable to the literature. Inhibition is rescued by naloxone in a concentration-dependent manner. This iPSC-preBötC mimic is crucial for investigating OIRD and combating the overdose crisis and a first step for the integration of a functional overdose model into microphysiological systems.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda