RESUMEN
Tumor blood vessels are highly leaky in structure and have poor blood perfusion, which hampers infiltration and function of CD8T cells within tumor. Normalizing tumor vessels is thus thought to be important in promoting the flux of immune T cells and enhancing ant-tumor immunity. However, how tumor vasculature is normalized is poorly understood. Metformin (Met) combined with ant-PD-1 therapy is known to stimulate proliferation of and to produce large amounts of IFNγ from tumor-infiltrating CD8T lymphocytes (CD8TILs). We found that the combination therapy promotes the pericyte coverage of tumor vascular endothelial cells (ECs) to improve blood perfusion and that it suppresses the hyperpermeability through the increase of VE-cadherin. Peripheral node addressin(PNAd) and vascular cell adhesion molecule (VCAM)-1, both implicated to promote tumor infiltration of CD8T cells, were also increased. Importantly, tumor vessel normalization, characterized as the reduced 70-kDa dextran leakage and the enhancement of VE-cadherin and VCAM-1, were canceled by anti-CD8 Ab or anti-IFNγ Ab injection to mice. The increased CD8TILs were also abrogated by anti-IFNγ Ab injection. In vascular ECs, flow cytometry analysis revealed that pSTAT1 expression was found to be associated with VE-cadherin expression. Moreover, in vitro treatment with Met and IFNγ enhanced VE-cadherin and VCAM-1 on human umbilical vein endothelial cells (HUVECs). The Kaplan-Meier method revealed a correlation of VE-cadherin or VCAM-1 levels with overall survival in patients treated with immune checkpoint inhibitors. These data indicate that IFNγ-mediated cross talk of CD8TILs with tumor vessels is important for creating a better tumor microenvironment and maintaining sustained antitumor immunity.
Asunto(s)
Linfocitos T CD8-positivos , Interferón gamma , Metformina , Receptor de Muerte Celular Programada 1 , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Animales , Interferón gamma/metabolismo , Ratones , Metformina/farmacología , Metformina/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ratones Endogámicos C57BL , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Cadherinas/metabolismo , Antígenos CD/metabolismo , Sinergismo FarmacológicoRESUMEN
Thrombosis is a well-known cardiovascular disease (CVD) complication that has caused death in many patients with cancer. Oral bacteria have been reported to contribute to systemic diseases, including CVDs, and tumor metastasis. However, whether oral bacteria-induced thrombosis induces tumor metastasis remains poorly understood. In this study, the cariogenic oral bacterium Streptococcus mutans was used to examine thrombosis in vitro and in vivo. Investigation of tumor metastasis to the lungs was undertaken by intravenous S. mutans implantation using a murine breast cancer metastasis model. The results indicated that platelet activation, aggregation, and coagulation were significantly altered in S. mutans-stimulated endothelial cells (ECs), with elevated neutrophil migration, thereby inducing thrombosis formation. Streptococcus mutans stimulation significantly enhances platelet and tumor cell adhesion to the inflamed ECs. Furthermore, S. mutans-induced pulmonary thrombosis promotes breast cancer cell metastasis to the lungs in vivo, which can be reduced by using aspirin, an antiplatelet drug. Our findings indicate that oral bacteria promote tumor metastasis through thrombosis formation. Oral health management is important to prevent CVDs, tumor metastasis, and their associated death.
Asunto(s)
Neoplasias de la Mama , Trombosis , Humanos , Ratones , Animales , Femenino , Streptococcus mutans/metabolismo , Biopelículas , Células EndotelialesRESUMEN
BACKGROUND: Conventional chemotherapy is based on the maximum tolerated dose (MTD) and requires treatment-free intervals to restore normal host cells. MTD chemotherapy may induce angiogenesis or immunosuppressive cell infiltration during treatment-free intervals. Low-dose metronomic (LDM) chemotherapy is defined as frequent administration at lower doses and causes less inflammatory change, whereas MTD chemotherapy induces an inflammatory change. Although several LDM regimens have been applied, LDM cisplatin (CDDP) has been rarely reported. This study addressed the efficacy of LDM CDDP on tumour endothelial cell phenotypic alteration compared to MTD CDDP. METHODS: Tumour growth and metastasis were assessed in bladder cancer-bearing mice treated with LDM or MTD gemcitabine (GEM) and CDDP. To elucidate the therapeutic effects of LDM CDDP, the change of tumour vasculature, tumour-infiltrating immune cells and inflammatory changes were evaluated by histological analysis and mRNA expression in tumour tissues. RESULTS: Tumour growth and bone metastasis were more suppressed by LDM CDDP + MTD GEM treatment than MTD CDDP + MTD GEM. Myeloid-derived suppressor cell accumulation was reduced by LDM CDDP, whereas inflammatory change was induced in the tumour microenvironment by MTD CDDP. CONCLUSION: LDM CDDP does not cause inflammatory change unlike MTD CDDP, suggesting that it is a promising strategy in chemotherapy.
Asunto(s)
Cisplatino , Neoplasias , Animales , Ratones , Gemcitabina , Esquema de Medicación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Microambiente TumoralRESUMEN
Multinucleated microglia have been observed in contexts associated with infection, inflammation, and aging. Though commonly linked to pathological conditions, the larger cell size of multinucleated microglia might enhance their phagocytic functions, potentially aiding in the clearance of brain debris and suggesting a reassessment of their pathological significance. To assess the phagocytic capacity of multinucleated microglia and its implications for brain debris clearance, we induced their formation by inhibiting Pyk2 activity using the pharmacological inhibitor PF-431396, which triggers cytokinesis regression. Multinucleated microglia demonstrate enhanced phagocytic function, as evidenced by their increased capacity to engulf ß-amyloid (Aß) oligomers. Concurrently, the phosphorylation of Pyk2, induced by Aß peptide, was diminished upon treatment with a Pyk2 inhibitor (Pyk2-Inh, PF-431396). Furthermore, the increased expression of Lamp1, a lysosomal marker, with Pyk2-inh treatment, suggests an enhancement in proteolytic activity. In vivo, we generated an acute Alzheimer's disease (AD) model by infusing Aß into the brains of Iba-1 EGFP transgenic (Tg) mice. The administration of the Pyk2-Inh led to an increased migration of microglia toward amyloid deposits in the brains of Iba-1 EGFP Tg mice, accompanied by morphological activation, suggesting a heightened affinity for Aß. In human microglia, lipopolysaccharide (LPS)-induced inflammatory responses showed that inhibition of Pyk2 signaling significantly reduced the transcription and protein expression of pro-inflammatory markers. These results suggest that Pyk2 inhibition can modulate microglial functions, potentially reducing neuroinflammation and aiding in the clearance of neurodegenerative disease markers. This highlights Pyk2 as a promising target for therapeutic intervention in neurodegenerative diseases.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Quinasa 2 de Adhesión Focal , Ratones Transgénicos , Microglía , Fagocitosis , Quinasa 2 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/antagonistas & inhibidores , Animales , Péptidos beta-Amiloides/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Humanos , Ratones Endogámicos C57BLRESUMEN
Extracellular vesicles (EVs) serve as an intrinsic system for delivering functional molecules within our body, playing significant roles in diverse physiological phenomena and diseases. Both native and engineered EVs are currently the subject of extensive research as promising therapeutics and drug delivery systems, primarily due to their remarkable attributes, such as targeting capabilities, biocompatibility, and low immunogenicity and mutagenicity. Nevertheless, their clinical application is still a long way off owing to multiple limitations. In this context, the Science Board of the Pharmaceuticals and Medical Devices Agency (PMDA) of Japan has conducted a comprehensive assessment to identify the current issues related to the quality and safety of EV-based therapeutic products. Furthermore, we have presented several examples of the state-of-the-art methodologies employed in EV manufacturing, along with guidelines for critical processes, such as production, purification, characterization, quality evaluation and control, safety assessment, and clinical development and evaluation of EV-based therapeutics. These endeavors aim to facilitate the clinical application of EVs and pave the way for their transformative impact in healthcare.
Asunto(s)
Vesículas Extracelulares , Control de Calidad , Humanos , Animales , Sistemas de Liberación de Medicamentos/métodosRESUMEN
OBJECTIVES: This study analyzes the relationship between biglycan expression in prostate cancer and clinicopathological parameters to clarify the potential link between biglycan and prognosis and progression to castration-resistant prostate cancer (CRPC). METHODS: We retrospectively analyzed 60 cases of prostate cancer patients who underwent robot-assisted laparoscopic radical prostatectomy in Hokkaido University Hospital. RESULTS: Biglycan was expressed in the tumor stroma but not in tumor cells. There was no significant relationship with biochemical recurrence (p = 0.5237), but the expression of biglycan was 36.1% in the group with progression to CRPC. This indicates a significant relationship with progression to CRPC (p = 0.0182). Furthermore, the expression of biglycan-positive blood vessels was significantly higher (15.9%) in the group with biochemical recurrence than in the group without biochemical recurrence (8.5%) (p = 0.0169). The biglycan-positive vessels were 28.6% in the group with progression to CRPC, which was significantly higher than that in the group without progression to CRPC (p < 0.0001). CONCLUSION: This is the first study to show that stroma biglycan is a useful prognostic factor for prostate cancer.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/patología , Estudios Retrospectivos , Biglicano , Neoplasias de la Próstata/patología , Antígeno Prostático EspecíficoRESUMEN
Bone is a highly vascularized organ that not only plays multiple roles in supporting the body and organs but also endows the microstructure, enabling distinct cell lineages to reciprocally interact. Recent studies have uncovered relevant roles of the bone vasculature in bone patterning, morphogenesis, homeostasis, and pathological bone destruction, including osteoporosis and tumor metastasis. This review provides an overview of current topics in the interactive molecular events between endothelial cells and bone cells during bone ontogeny and discusses the future direction of this research area to find novel ways to treat bone diseases.
Asunto(s)
Enfermedades Óseas , Células Endoteliales , Humanos , Desarrollo Óseo , Huesos , HomeostasisRESUMEN
Epidemiological relationships between cancer and cardiovascular diseases have been reported, but a molecular basis remains unclear. Some proteoglycans that strongly bind low-density-lipoprotein (LDL) are abundant both in atherosclerotic regions and in high metastatic-tumor tissue. LDL retention is crucial for the initiation of atherosclerosis, although its contribution to malignancy of cancer is not known. In our study, we show the importance of the accumulation of LDL in tumor metastasis. We demonstrated that high metastatic-tumor tissue contains high amounts of LDL and forms more oxidized LDL (ox-LDL). Interestingly, lectin-like ox-LDL receptor 1 (LOX-1), a receptor for ox-LDL and a recognized key molecule for cardiovascular diseases, was highly expressed in tumor endothelial cells (TECs). Neutrophils are important for ox-LDL formation. Since we observed the accumulation and activation of neutrophils in HM-tumors, we evaluated the involvement of LOX-1 in neutrophil migration and activation. LOX-1 induced neutrophil migration via CCL2 secretion from TECs, which was enhanced by ox-LDL. Finally, we show genetic manipulation of LOX-1 expression in TECs or tumor stroma tended to reduce lung metastasis. Thus, the LOX-1/ox-LDL axis in TECs may lead to the formation of a high metastatic-tumor microenvironment via attracting neutrophils.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Células Endoteliales , Lipoproteínas LDL , Neoplasias , Neutrófilos , Receptores Depuradores de Clase E , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Lipoproteínas LDL/metabolismo , Neoplasias/metabolismo , Neutrófilos/metabolismo , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/metabolismo , Microambiente TumoralRESUMEN
Recent studies have demonstrated a relationship between oral bacteria and systemic inflammation. Endothelial cells (ECs), which line blood vessels, control the opening and closing of the vascular barrier and contribute to hematogenous metastasis; however, the role of oral bacteria-induced vascular inflammation in tumor metastasis remains unclear. In this study, we examined the phenotypic changes in vascular ECs following Streptococcus mutans (S. mutans) stimulation in vitro and in vivo. The expression of molecules associated with vascular inflammation and barrier-associated adhesion was analyzed. Tumor metastasis was evaluated after intravenous injection of S. mutans in murine breast cancer hematogenous metastasis model. The results indicated that S. mutans invaded the ECs accompanied by inflammation and NF-κB activation. S. mutans exposure potentially disrupts endothelial integrity by decreasing vascular endothelial (VE)-cadherin expression. The migration and adhesion of tumor cells were enhanced in S. mutans-stimulated ECs. Furthermore, S. mutans-induced lung vascular inflammation promoted breast cancer cell metastasis to the lungs in vivo. The results indicate that oral bacteria promote tumor metastasis through vascular inflammation and the disruption of vascular barrier function. Improving oral hygiene in patients with cancer is of great significance in preventing postoperative pneumonia and tumor metastasis.
Asunto(s)
Neoplasias de la Mama , Streptococcus mutans , Humanos , Ratones , Animales , Femenino , Streptococcus mutans/fisiología , Células Endoteliales/metabolismo , Transducción de Señal , Inflamación/metabolismo , Neoplasias de la Mama/metabolismoRESUMEN
Tumor blood vessels play important roles in tumor progression and metastasis. Targeting tumor endothelial cells (TECs) is one of the strategies for cancer therapy. We previously reported that biglycan, a small leucine-rich proteoglycan, is highly expressed in TECs. TECs utilize biglycan in an autocrine manner for migration and angiogenesis. Furthermore, TEC-derived biglycan stimulates tumor cell migration in a paracrine manner leading to tumor cell intravasation and metastasis. In this study, we explored the therapeutic effect of biglycan inhibition in the TECs of renal cell carcinoma using an in vivo siRNA delivery system known as a multifunctional envelope-type nanodevice (MEND), which contains a unique pH-sensitive cationic lipid. To specifically deliver MEND into TECs, we incorporated cyclo(Arg-Gly-Asp-D-Phe-Lys) (cRGD) into MEND because αV ß3 integrin, a receptor for cRGD, is selective and highly expressed in TECs. We developed RGD-MEND-encapsulating siRNA against biglycan. First, we confirmed that MEND was delivered into OS-RC-2 tumor-derived TECs and induced in vitro RNAi-mediated gene silencing. MEND was then injected intravenously into OS-RC-2 tumor-bearing mice. Flow cytometry analysis demonstrated that MEND was specifically delivered into TECs. Quantitative RT-PCR indicated that biglycan was knocked down by biglycan siRNA-containing MEND. Finally, we analyzed the therapeutic effect of biglycan silencing by MEND in TECs. Tumor growth was inhibited by biglycan siRNA-containing MEND. Tumor microenvironmental factors such as fibrosis were also normalized using biglycan inhibition in TECs. Biglycan in TECs can be a novel target for cancer treatment.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Inhibidores de la Angiogénesis , Animales , Biglicano/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Células Endoteliales , Humanos , Neoplasias Renales/genética , Liposomas , Ratones , ARN Interferente Pequeño/genéticaRESUMEN
BACKGROUND: Basal cell carcinoma (BCC) is the most common cancer worldwide. Most of BCCs can be detected in the early stages and are generally well controlled with local resection. Despite the high incidence of BCC, metastasis is rarely observed. Metastatic BCCs generally have an aggressive phenotype and are refractory to conventional treatment. CASE PRESENTATION: We describe a rare case of BCC in which a series of local relapses culminated in metastasis into the oral cavity 10 years after the first diagnosis of cutaneous BCC. We performed surgical resection and postoperative radiotherapy in this patient; 11 months after the final course of radiotherapy, the BCC remains stable, and the patient continues to be monitored regularly. CONCLUSIONS: Because metastatic BCC is refractory to current treatment and difficult to control, his treatment history and the pathohistological features of BCC had to be considered in posttreatment planning.
Asunto(s)
Carcinoma Basocelular , Neoplasias Cutáneas , Carcinoma Basocelular/cirugía , Humanos , Mucosa Bucal/patología , Mucosa Bucal/cirugía , Recurrencia Local de Neoplasia/cirugía , Fenotipo , Neoplasias Cutáneas/patologíaRESUMEN
BACKGROUND: Biglycan is a proteoglycan found in the extracellular matrix. We have previously shown that biglycan is secreted from tumor endothelial cells and induces tumor angiogenesis and metastasis. However, the function of stroma biglycan in breast cancer is still unclear. METHODS: Biglycan gene analysis and its prognostic values in human breast cancers were based on TCGA data. E0771 breast cancer cells were injected into WT and Bgn KO mice, respectively. RESULTS: Breast cancer patients with high biglycan expression had worse distant metastasis-free survival. Furthermore, biglycan expression was higher in the tumor stromal compartment compared to the epithelial compartment. Knockout of biglycan in the stroma (Bgn KO) in E0771 tumor-bearing mice inhibited metastasis to the lung. Bgn KO also impaired tumor angiogenesis and normalized tumor vasculature by repressing tumor necrosis factor-É/angiopoietin 2 signaling. Moreover, fibrosis was suppressed and CD8+ T cell infiltration was increased in tumor-bearing Bgn KO mice. Furthermore, chemotherapy drug delivery and efficacy were improved in vivo in Bgn KO mice. CONCLUSION: Our results suggest that targeting stromal biglycan may yield a potent and superior anticancer effect in breast cancer.
Asunto(s)
Biglicano/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Células del Estroma/metabolismo , Microambiente Tumoral/fisiología , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Animales , Biglicano/genética , Biglicano/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Femenino , Fibrosis/prevención & control , Humanos , Ratones , Ratones Noqueados , Metástasis de la Neoplasia/prevención & control , Neovascularización Patológica/genética , Neovascularización Patológica/prevención & control , Paclitaxel/uso terapéutico , Pronóstico , Transducción de Señal , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Oral squamous cell carcinoma (OSCC) impairs functionality and sensuousness resulting in poor quality of life. Biomarkers can predict disease trajectory and lead to effective treatments. Transcriptomics have identified genes that are upregulated in tumor endothelial cells (TECs) compared with normal endothelial cells (NECs). Among them, chemokine receptor 7 (CXCR7) is highly expressed in TECs of several cancers and involved in angiogenesis of TECs. However, levels of CXCR7 in OSCC blood vessels have not been fully investigated. In this study, we analyzed the correlation between CXCR7 expression in TECs and clinicopathological factors in OSCC. Immunohistochemistry for CXCR7 and CD34 was performed on 59 OSCC tissue specimens resected between 1996 and 2008 at Hokkaido University Hospital. CXCR7 expression in blood vessels was evaluated by the ratio of CXCR7+/CD34+ blood vessels. CXCR7 expression was 42% and 19% in tumor and non-tumor parts, respectively, suggesting that CXCR7 expression is higher in TECs than in NECs. CXCR7 expression in TECs correlated with advanced T-stage and cancer stage. Overall survival and disease-free survival rates were higher in low-expressing CXCR7 patients than in high-expressing. These results suggest that CXCR7 expression in blood vessels may be a useful diagnostic and prognostic marker for OSCC patients.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Receptores CXCR , Anciano , Biomarcadores de Tumor , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Estadificación de Neoplasias , Neovascularización Patológica/patología , Pronóstico , Receptores CXCR/genética , Receptores CXCR/metabolismo , Tasa de SupervivenciaRESUMEN
The tumor microenvironment (TME) consists of various components including cancer cells, tumor vessels, cancer-associated fibroblasts (CAFs), and inflammatory cells. These components interact with each other via various cytokines, which often induce tumor progression. Thus, a greater understanding of TME networks is crucial for the development of novel cancer therapies. Many cancer types express high levels of TGF-ß, which induces endothelial-to-mesenchymal transition (EndMT), leading to formation of CAFs. Although we previously reported that CAFs derived from EndMT promoted tumor formation, the molecular mechanisms underlying these interactions remain to be elucidated. Furthermore, tumor-infiltrating inflammatory cells secrete various cytokines, including TNF-α. However, the role of TNF-α in TGF-ß-induced EndMT has not been fully elucidated. Therefore, this study examined the effect of TNF-α on TGF-ß-induced EndMT in human endothelial cells (ECs). Various types of human ECs underwent EndMT in response to TGF-ß and TNF-α, which was accompanied by increased and decreased expression of mesenchymal cell and EC markers, respectively. In addition, treatment of ECs with TGF-ß and TNF-α exhibited sustained activation of Smad2/3 signals, which was presumably induced by elevated expression of TGF-ß type I receptor, TGF-ß2, activin A, and integrin αv, suggesting that TNF-α enhanced TGF-ß-induced EndMT by augmenting TGF-ß family signals. Furthermore, oral squamous cell carcinoma-derived cells underwent epithelial-to-mesenchymal transition (EMT) in response to humoral factors produced by TGF-ß and TNF-α-cultured ECs. This EndMT-driven EMT was blocked by inhibiting the action of TGF-ßs. Collectively, our findings suggest that TNF-α enhances TGF-ß-dependent EndMT, which contributes to tumor progression.
Asunto(s)
Transición Epitelial-Mesenquimal , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Biomarcadores , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular , Células Cultivadas , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , FN-kappa B/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Microambiente Tumoral/genética , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
Going from bench to bedside is a simplified description of translational research, with the ultimate goal being to improve the health status of mankind. Tumor endothelial cells (TECs) perform angiogenesis to support the growth, establishment, and dissemination of tumors to distant organs. TECs have various features that distinguish them from normal endothelial cells, which include alterations in gene expression patterns, higher angiogenic and metabolic activities, and drug resistance tendencies. The special characteristics of TECs enhance the vulnerability of tumor blood vessels toward antiangiogenic therapeutic strategies. Therefore, apart from being a viable therapeutic target, TECs would act as a better mediator between the bench (i.e., angiogenesis research) and the bedside (i.e., clinical application of drugs discovered through research). Exploitation of TEC characteristics could reveal unidentified strategies of enhancing and monitoring antiangiogenic therapy in the treatment of cancer, which are discussed in this review.
Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/uso terapéutico , Endotelio Vascular/metabolismo , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/farmacología , Endotelio Vascular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Investigación Biomédica Traslacional/métodosRESUMEN
BACKGROUND: Tumor endothelial cells (TECs) perform tumor angiogenesis, which is essential for tumor growth and metastasis. Tumor cells produce large amounts of lactic acid from glycolysis; however, the mechanism underlying the survival of TECs to enable tumor angiogenesis under high lactic acid conditions in tumors remains poorly understood. METHODOLOGY: The metabolomes of TECs and normal endothelial cells (NECs) were analyzed by capillary electrophoresis time-of-flight mass spectrometry. The expressions of pH regulators in TECs and NECs were determined by quantitative reverse transcription-PCR. Cell proliferation was measured by the MTS assay. Western blotting and ELISA were used to validate monocarboxylate transporter 1 and carbonic anhydrase 2 (CAII) protein expression within the cells, respectively. Human tumor xenograft models were used to access the effect of CA inhibition on tumor angiogenesis. Immunohistochemical staining was used to observe CAII expression, quantify tumor microvasculature, microvessel pericyte coverage, and hypoxia. RESULTS: The present study shows that, unlike NECs, TECs proliferate in lactic acidic. TECs showed an upregulated CAII expression both in vitro and in vivo. CAII knockdown decreased TEC survival under lactic acidosis and nutrient-replete conditions. Vascular endothelial growth factor A and vascular endothelial growth factor receptor signaling induced CAII expression in NECs. CAII inhibition with acetazolamide minimally reduced tumor angiogenesis in vivo. However, matured blood vessel number increased after acetazolamide treatment, similar to bevacizumab treatment. Additionally, acetazolamide-treated mice showed decreased lung metastasis. CONCLUSION: These findings suggest that due to their effect on blood vessel maturity, pH regulators like CAII are promising targets of antiangiogenic therapy. Video Abstract.
Asunto(s)
Acidosis Láctica/metabolismo , Anhidrasa Carbónica II/metabolismo , Células Neoplásicas Circulantes/metabolismo , Microambiente Tumoral , Acidosis Láctica/patología , Animales , Anhidrasa Carbónica II/genética , Proliferación Celular , Supervivencia Celular , Células Endoteliales/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Neoplásicas Circulantes/patología , Transducción de Señal , Células Tumorales CultivadasRESUMEN
Tumor angiogenesis research and antiangiogenic drug development make use of cultured endothelial cells (ECs) including the human microvascular ECs among others. However, it has been reported that tumor ECs (TECs) are different from normal ECs (NECs). To functionally validate antiangiogenic drugs, cultured TECs are indispensable tools, but are not commercially available. Primary human TECs are available only in small quantities from surgical specimens and have a short life span in vitro due to their cellular senescence. We established immortalized human TECs (h-imTECs) and their normal counterparts (h-imNECs) by infection with lentivirus producing simian virus 40 large T antigen and human telomerase reverse transcriptase to overcome the replication barriers. These ECs exhibited an extended life span and retained their characteristic endothelial morphology, expression of endothelial marker, and ability of tube formation. Furthermore, h-imTECs showed their specific characteristics as TECs, such as increased proliferation and upregulation of TEC markers. Treatment with bevacizumab, an antiangiogenic drug, dramatically decreased h-imTEC survival, whereas the same treatment failed to alter immortalized NEC survival. Hence, these h-imTECs could be a valuable tool for drug screening to develop novel therapeutic agents specific to TECs or functional biological assays in tumor angiogenesis research.
Asunto(s)
Transformación Celular Neoplásica , Células Endoteliales/metabolismo , Células Endoteliales/patología , Neoplasias Renales/patología , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Biomarcadores , Línea Celular Transformada , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Expresión Génica Ectópica , Humanos , Cariotipificación , Telomerasa/genética , Telomerasa/metabolismoRESUMEN
Tumor progression depends on the process of angiogenesis, which is the formation of new blood vessels. These newly formed blood vessels supply oxygen and nutrients to the tumor, supporting its progression and providing a gateway for tumor metastasis. Tumor angiogenesis is regulated by the balance between angiogenic activators and inhibitors within the tumor microenvironment. Because the newly formed tumor blood vessels originate from preexisting normal vessels, tumor blood vessels, and tumor endothelial cells (TECs) have historically been considered to be the same as normal blood vessels and endothelial cells; however, evidence of TECs’ distinctive abnormal phenotypes has increased. In addition, it has been revealed that TECs constitute a heterogeneous population. Thus, TECs that line tumor blood vessels are important targets in cancer therapy. We have previously reported that TECs induce cancer metastasis. In this review, we describe recent studies on TEC abnormalities related to cancer progression to provide insight into new anticancer therapies.
Asunto(s)
Células Endoteliales/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Neovascularización Patológica , Microambiente Tumoral , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/farmacología , Biomarcadores , Aberraciones Cromosómicas , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Transducción de Señal/efectos de los fármacosRESUMEN
Tumor metastasis is the main cause of cancer-related death. Understanding the molecular mechanisms underlying tumor metastasis is crucial to control this fatal disease. Several molecular pathways orchestrate the complex biological cell events during a metastatic cascade. It is now well known that bidirectional interaction between tumor cells and their microenvironment, including tumor stroma, is important for tumor progression and metastasis. Tumor stromal cells, which acquire their specific characteristics in the tumor microenvironment, accelerate tumor malignancy. The formation of new blood vessels, termed as tumor angiogenesis, is a requirement for tumor progression. Tumor blood vessels supply nutrients and oxygen and also provide the route for metastasis. Tumor endothelial cells, which line tumor blood vessels, also exhibit several altered phenotypes compared with those of their normal counterparts. Recent studies have emphasized "angiocrine factors" that are released from tumor endothelial cells and promote tumor progression. During intravasation, tumor cells physically contact tumor endothelial cells and interact with them by juxtacrine and paracrine signaling. Recently, we observed that in highly metastatic tumors, tumor endothelial cells interact with tumor cells by secretion of a small leucine-rich repeat proteoglycan known as biglycan. Biglycan from tumor endothelial cells stimulates the tumor cells to metastasize. In the present review, we highlight the role of tumor stromal cells, particularly endothelial cells, in the initial steps of tumor metastasis.
Asunto(s)
Biglicano/metabolismo , Células Endoteliales/patología , Neoplasias/irrigación sanguínea , Neovascularización Patológica/patología , Animales , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Humanos , Metástasis de la Neoplasia , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/metabolismo , Comunicación Paracrina , Transducción de Señal , Microambiente TumoralRESUMEN
Tumor blood vessels play an important role in tumor progression and metastasis. We previously reported that tumor endothelial cells (TEC) exhibit several altered phenotypes compared with normal endothelial cells (NEC). For example, TEC have chromosomal abnormalities and are resistant to several anticancer drugs. Furthermore, TEC contain stem cell-like populations with high aldehyde dehydrogenase (ALDH) activity (ALDHhigh TEC). ALDHhigh TEC have proangiogenic properties compared with ALDHlow TEC. However, the association between ALDHhigh TEC and drug resistance remains unclear. In the present study, we found that ALDH mRNA expression and activity were higher in both human and mouse TEC than in NEC. Human NEC:human microvascular endothelial cells (HMVEC) were treated with tumor-conditioned medium (tumor CM). The ALDHhigh population increased along with upregulation of stem-related genes such as multidrug resistance 1, CD90, ALP, and Oct-4. Tumor CM also induced sphere-forming ability in HMVEC. Platelet-derived growth factor (PDGF)-A in tumor CM was shown to induce ALDH expression in HMVEC. Finally, ALDHhigh TEC were resistant to fluorouracil (5-FU) in vitro and in vivo. ALDHhigh TEC showed a higher grade of aneuploidy compared with that in ALDHlow TEC. These results suggested that tumor-secreting factor increases ALDHhigh TEC populations that are resistant to 5-FU. Therefore, ALDHhigh TEC in tumor blood vessels might be an important target to overcome or prevent drug resistance.