Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Clean Prod ; 394: 136166, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36721728

RESUMEN

Body coveralls, often made of single-use plastics, are essential Personal Protective Equipment (PPE) and, along with masks, are widely used in healthcare facilities and public spaces in the wake of the recent COVID-19 pandemic. The widespread use of these body coveralls poses a significant threat to terrestrial and aquatic ecosystems, given their polluting nature and disposal frequency. Therefore, it is necessary to promote the adoption of alternatives that increase the safe reusability of PPE clothing and reduce environmental and health hazards. This study presents a comparative Cradle-to-Grave Life Cycle Assessment (LCA) of disposable and reusable PPE body coveralls from a product life cycle perspective. A comprehensive life cycle inventory and LCA framework specific to Indian conditions have been developed through this study. The LCA is performed as per standard protocols using SimaPro software under recipe 2016 (H) impact assessment method. Six midpoint impact categories viz. Global Warming Potential, Terrestrial Acidification, Freshwater Eutrophication, Terrestrial Ecotoxicity, Human Carcinogenic Toxicity, and Water Consumption are assessed, along with Cumulative Energy Demand. Results suggest that reusable PPE improves environmental and human health performance in all the impact categories except water consumption. Sensitivity analysis reveals that replacing conventional electricity with solar energy for PPE manufacturing and disposal will provide additional environmental benefits. The findings can help the medical textile industries, healthcare workers, and policymakers to make environmentally informed choices.

2.
Environ Res ; 212(Pt B): 113257, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35398315

RESUMEN

Clean energy transition via utilizing biomass resources has been projected as an important climate change mitigation strategy. A vital characteristic of biomass is its localized nature; therefore, bioenergy utilization should follow decentralized planning. Agrarian countries like India can take benefit of its large agricultural biomass waste pool to produce clean renewable energy. However, prior knowledge of spatio-temporal distribution, competing uses, and biomass characteristics are necessary for successful bioenergy planning. This paper assesses biomass resource and its power generation potential at different agro-climatic zone levels in the state of Rajasthan, India considering crop residue biomass (25 different crop residues from 14 crops) and livestock manure (from cattle, buffalo, and poultry). Uncertainties associated with the availability of biomass and the power generation potential are assessed for each agro-climatic zone under different scenarios. Greenhouse gases (GHGs) emissions from biomass-based power generations are also estimated and compared with biomass-equivalent coal power plants. It is observed that the annual biomass power potential of Rajasthan is 3056 MW (2496 MW from crop residues and 560 MW from livestock manure). Scenario analysis suggests that the potential varies from 2445 to 6045 MW under different biomass availability and power plant operating conditions. Annual GHGs emissions due to biomass power generation is 5053 kt CO2eq. Replacing coal-based power with biomass power would result in annual GHGs savings of 11412 kt CO2eq. The paper also discusses various carriers and barriers viz. logistics, institutional, financial and technical in setting up decentralized bioenergy plants. Outcomes of the present study are expected to assist renewable energy planners in India.


Asunto(s)
Cambio Climático , Estiércol , Animales , Biomasa , Bovinos , Carbón Mineral , India , Ganado
3.
Ecotoxicol Environ Saf ; 147: 516-522, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28915399

RESUMEN

Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH4 emission. The results show that the CH4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH4 emission in India in 2012 were 1030 Tg CO2e (GTP20) and 62 Tg CO2e (GTP100) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH4 emissions, which is useful when comparing policies that address multiple gases.


Asunto(s)
Contaminantes Atmosféricos/análisis , Cambio Climático , Ganado , Metano/análisis , Modelos Teóricos , Temperatura , Animales , India
4.
Bioresour Technol ; 330: 125012, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33773265

RESUMEN

Sugarcane is an important cash crop used for producing sweeteners and also some bioproducts (alcohol and bioenergy). The current study assesses life cycle energy, carbon and water footprint of sugarcane based sugar, ethanol and electricity in India. A farm to factory gate attributional life cycle assessment (LCA) is conducted to assess the energy and carbon footprints whereas the Food and Agriculture Organization's (FAO) CropWat model is used to estimate the water footprint (green, blue and grey). For the base case, electricity has the highest energy return on investment (EROI), lowest carbon and water footprints among the bioproducts. The choice of allocation method (economic, mass, and energy) impacts the energy and environmental outcomes of the bioproducts. The comparison among four different sugarcane seasons shows that bioproducts available from Adsali sugarcane have the highest EROI, lowest carbon and water footprints. The findings could lead to improved sustainability of sugarcane bioproducts in India.


Asunto(s)
Huella de Carbono , Saccharum , Animales , Carbono , Electricidad , Etanol , India , Estadios del Ciclo de Vida , Azúcares , Agua
5.
Bioresour Technol ; 304: 122959, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32135472

RESUMEN

Bioelectrochemical systems like microbial fuel cells (MFCs) are quaint systems known to metamorphose the chemical energy of organic matter into electrical energy using catalytic activity of microorganisms. A novel continuous Auto Circulating Bio-Electrochemical Reactor (AutoCirBER) was developed to fulfil the gap of 'simple, inexpensive and compact design' that can continuously treat larger amount of organic wastewater at shorter residence time and without consuming external energy for liquid mixing. AutoCirBER eliminated the need for external agitation for liquid-mixing and therefore, energy requirements. AutoCirBER was operated in continuous-mode and hydraulic retention time was optimized. The reactor underwent performance check-up viz. COD removal, net power output, columbic efficiency, sludge generation and an attributional life cycle assessment (LCA) was also conducted. AutoCirBER was sustainable to run in continuous-mode and showed more than 90.4% of COD removal, and 59.55 W.h net annual energy recovery. Experimental LCA of AutoCirBER also displays its environmental feasibility in longer run.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aguas Residuales , Reactores Biológicos , Electricidad , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
6.
Sci Total Environ ; 709: 136135, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31927428

RESUMEN

Globally, livestock is an important contributor to methane (CH4) emissions. This paper reviewed the various CH4 measurement and estimation techniques and mitigation approaches for the livestock sector. Two approaches for enteric livestock CH4 emission estimation are the top-down and bottom-up. The combination of both could further improve our understanding of enteric CH4 emission and possible mitigation measures. We discuss three mitigation approaches: reducing emissions, avoiding emissions, and enhancing the removal of emissions from livestock. Dietary management, livestock management, and breeding management are viable reducing emissions pathways. Dietary manipulation is easily applicable and can bring an immediate response. Economic incentive policies can help the livestock farmers to opt for diet, breeding, and livestock management mitigation approaches. Carbon pricing creates a better option to achieve reduction targets in a given period. A combination of carbon pricing, feeding management, breeding management, and livestock management is more feasible and sustainable CH4 emissions mitigation strategy rather than a single approach.

7.
Genome Announc ; 5(40)2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28982995

RESUMEN

Pangong is a brackish water lake having environmental conditions that are hostile to supporting life. This is the first report unveiling the microbial diversity of sediment from Pangong Lake, Ladakh, India, using a high-throughput metagenomic approach. Metagenomic data analysis revealed a community structure of microbes in which functional genetic diversity facilitates their survival.

8.
Bioresour Technol ; 242: 218-226, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28343863

RESUMEN

Sustainability of a bioenergy project depends on precise assessment of biomass resource, planning of cost-effective logistics and evaluation of possible environmental implications. In this context, this paper reviews the role and applications of geo-spatial tool such as Geographical Information System (GIS) for precise agro-residue resource assessment, biomass logistic and power plant design. Further, application of Life Cycle Assessment (LCA) in understanding the potential impact of agro-residue bioenergy generation on different ecosystem services has also been reviewed and limitations associated with LCA variability and uncertainty were discussed. Usefulness of integration of GIS into LCA (i.e. spatial LCA) to overcome the limitations of conventional LCA and to produce a holistic evaluation of the environmental benefits and concerns of bioenergy is also reviewed. Application of GIS, LCA and spatial LCA can help alleviate the challenges faced by ambitious bioenergy projects by addressing both economics and environmental goals.


Asunto(s)
Biocombustibles , Ecosistema , Sistemas de Información Geográfica , Biomasa , Ambiente
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda