RESUMEN
The vertebrate brain is highly complex, but its evolutionary origin remains elusive. Because of the absence of certain developmental domains generally marked by the expression of regulatory genes, the embryonic brain of the lamprey, a jawless vertebrate, had been regarded as representing a less complex, ancestral state of the vertebrate brain. Specifically, the absence of a Hedgehog- and Nkx2.1-positive domain in the lamprey subpallium was thought to be similar to mouse mutants in which the suppression of Nkx2-1 leads to a loss of the medial ganglionic eminence. Here we show that the brain of the inshore hagfish (Eptatretus burgeri), another cyclostome group, develops domains equivalent to the medial ganglionic eminence and rhombic lip, resembling the gnathostome brain. Moreover, further investigation of lamprey larvae revealed that these domains are also present, ruling out the possibility of convergent evolution between hagfish and gnathostomes. Thus, brain regionalization as seen in crown gnathostomes is not an evolutionary innovation of this group, but dates back to the latest vertebrate ancestor before the divergence of cyclostomes and gnathostomes more than 500 million years ago.
Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/embriología , Anguila Babosa/anatomía & histología , Anguila Babosa/embriología , Lampreas/anatomía & histología , Lampreas/embriología , Filogenia , Animales , Femenino , Anguila Babosa/genética , Humanos , Lampreas/genética , Lampreas/crecimiento & desarrollo , Larva/anatomía & histología , Masculino , Ratones , Datos de Secuencia Molecular , Sintenía/genéticaRESUMEN
The group of Dlx genes belongs to the homeobox-containing superfamily, and its members are involved in various morphogenetic processes. In vertebrate genomes, Dlx genes exist as multiple paralogues generated by tandem duplication followed by whole genome duplications. In this review, we provide an overview of the Dlx gene phylogeny with an emphasis on the chordate lineage. Referring to the Dlx gene repertoire, we discuss the establishment and conservation of the nested expression patterns of the Dlx genes in craniofacial development. Despite the accumulating genomic sequence resources in diverse vertebrates, embryological analyses of Dlx gene expression and function remain limited in terms of species diversity. By supplementing our original analysis of shark embryos with previous data from other osteichthyans, such as mice and zebrafish, we support the previous speculation that the nested Dlx expression in the pharyngeal arch is likely a shared feature among all the extant jawed vertebrates. Here, we highlight several hitherto unaddressed issues regarding the evolution and function of Dlx genes, with special reference to the craniofacial development of vertebrates.
Asunto(s)
Evolución Biológica , Proteínas de Homeodominio/genética , Cráneo/fisiología , Factores de Transcripción/genética , Vertebrados/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Genómica , Modelos Biológicos , Cráneo/anatomía & histologíaRESUMEN
The vertebrate mesoderm differs distinctly between the head and trunk, and the evolutionary origin of the head mesoderm remains enigmatic. Although the presence of somite-like segmentation in the head mesoderm of model animals is generally denied at molecular developmental levels, the appearance of head cavities in elasmobranch embryos has not been explained, and the possibility that they may represent vestigial head somites once present in an amphioxus-like ancestor has not been ruled out entirely. To examine whether the head cavities in the shark embryo exhibit any molecular signatures reminiscent of trunk somites, we isolated several developmentally key genes, including Pax1, Pax3, Pax7, Pax9, Myf5, Sonic hedgehog, and Patched2, which are involved in myogenic and chondrogenic differentiation in somites, and Pitx2, Tbx1, and Engrailed2, which are related to the patterning of the head mesoderm, from an elasmobranch species, Scyliorhinus torazame. Observation of the expression patterns of these genes revealed that most were expressed in patterns that resembled those found in amniote embryos. In addition, the head cavities did not exhibit an overt similarity to somites; that is, the similarity was no greater than that of the unsegmented head mesoderm in other vertebrates. Moreover, the shark head mesoderm showed an amniote-like somatic/visceral distinction according to the expression of Pitx2, Tbx1, and Engrailed2. We conclude that the head cavities do not represent a manifestation of ancestral head somites; rather, they are more likely to represent a derived trait obtained in the lineage of gnathostomes.
Asunto(s)
Cazón/embriología , Expresión Génica , Cabeza/embriología , Somitos/embriología , Animales , Evolución Biológica , Condrogénesis/genética , Cazón/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Genes del Desarrollo , Desarrollo de Músculos/genética , Somitos/metabolismoRESUMEN
Symmetry in the arrangement of body parts is a distinctive phylogenetic feature of animals. Cnidarians show both bilateral and radial symmetries in their internal organs, such as gastric pouches and muscles. However, how different symmetries appear during the developmental process remains unknown. Here, we report intraspecific variations in the symmetric arrangement of gastric pouches, muscles, and siphonoglyphs, the Anthozoan-specific organ that drives water into the organism, in D. lineata (Diadumenidae, Actiniaria). We found that the positional arrangement of the internal organs was apparently constrained to either biradial or bilateral symmetries depending on the number of siphonoglyphs. Based on the morphological observations, a mathematical model of internal organ positioning was employed to predict the developmental backgrounds responsible for the biradial and bilateral symmetries. In the model, we assumed that the specification of gastric pouches is orchestrated by lateral inhibition and activation, which results in different symmetries depending on the number of siphonoglyphs. Thus, we propose that a common developmental program can generate either bilateral or biradial symmetries depending on the number of siphonoglyphs formed in the early developmental stages.
RESUMEN
Transcription-coupled repair (TCR) efficiently removes a variety of lesions from the transcribed strand of active genes. Mutations in Cockayne syndrome group A and B genes (CSA and CSB) result in defective TCR, but the molecular mechanism of TCR in mammalian cells is not clear. We have found that CSA protein is translocated to the nuclear matrix after UV irradiation and colocalized with the hyperphosphorylated form of RNA polymerase II and that the translocation is dependent on CSB. We developed a cell-free system for the UV-induced translocation of CSA. A cytoskeleton (CSK) buffer-soluble fraction containing CSA and a CSK buffer-insoluble fraction prepared from UV-irradiated CS-A cells were mixed. After incubation, the insoluble fraction was treated with DNase I. CSA protein was detected in the DNase I-insoluble fraction, indicating that it was translocated to the nuclear matrix. In this cell-free system, the translocation was dependent on UV irradiation, CSB function, and TCR-competent CSA. Moreover, the translocation was dependent on functional TFIIH, as well as chromatin structure and transcription elongation. These results suggest that alterations of chromatin at the RNA polymerase II stall site, which depend on CSB and TFIIH at least, are necessary for the UV-induced translocation of CSA to the nuclear matrix.
Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Matriz Nuclear/metabolismo , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción/metabolismo , Rayos Ultravioleta , Línea Celular Transformada , Núcleo Celular/metabolismo , Sistema Libre de Células , Cromatina/fisiología , Cromatina/ultraestructura , Enzimas Reparadoras del ADN/genética , Fibroblastos/citología , Humanos , Transporte de Proteínas/efectos de la radiación , Factor de Transcripción TFIIH/genética , Factores de Transcripción/genética , Transcripción GenéticaRESUMEN
BACKGROUND: The skeletal musculature of gnathostomes, which is derived from embryonic somites, consists of epaxial and hypaxial portions. Some hypaxial muscles, such as tongue and limb muscles, undergo de-epithelialization and migration during development. Delamination and migration of these myoblasts, or migratory muscle precursors (MMPs), is generally thought to be regulated by hepatocyte growth factor (HGF) and receptor tyrosine kinase (MET) signaling. However, the prevalence of this mechanism and the expression patterns of the genes involved in MMP development across different vertebrate species remain elusive. RESULTS: We performed a comparative analysis of Hgf and Met gene expression in several vertebrates, including mouse, chicken, dogfish (Scyliorhinus torazame), and lamprey (Lethenteron camtschaticum). While both Hgf and Met were expressed during development in the mouse tongue muscle, and in limb muscle formation in the mouse and chicken, we found no clear evidence for the involvement of HGF/MET signaling in MMP development in shark or lamprey embryos. CONCLUSIONS: Our results indicate that the expressions and functions of both Hgf and Met genes do not represent shared features of vertebrate MMPs, suggesting a stepwise participation of HGF/MET signaling in MMP development during vertebrate evolution.
RESUMEN
BACKGROUND: The extant vertebrates include cyclostomes (lamprey and hagfish) and crown gnathostomes (jawed vertebrates), but there are various anatomical disparities between these two groups. Conspicuous in the gnathostomes is the neck, which occupies the interfacial domain between the head and trunk, including the occipital part of the cranium, the shoulder girdle, and the cucullaris and hypobranchial muscles (HBMs). Of these, HBMs originate from occipital somites to form the ventral pharyngeal and neck musculature in gnathostomes. Cyclostomes also have HBMs on the ventral pharynx, but lack the other neck elements, including the occipital region, the pectoral girdle, and cucullaris muscles. These anatomical differences raise questions about the evolution of the neck in vertebrates. RESULTS: In this study, we observed developing HBMs as a basis for comparison between the two groups and show that the arrangement of the head-trunk interface in gnathostomes is distinct from that of lampreys. Our comparative analyses reveal that, although HBM precursors initially pass through the lateral side of the pericardium in both groups, the relative positions of the pericardium withrespect to the pharyngeal arches differ between the two, resulting in diverse trajectories of HBMs in gnathostomes and lampreys. CONCLUSIONS: We suggest that a heterotopic rearrangement of early embryonic components, including the pericardium and pharyngeal arches, may have played a fundamental role in establishing the gnathostome HBMs, which would also have served as the basis for neck formation in the jawed vertebrate lineage.
RESUMEN
The tympanic membrane is a thin layer that originates from the ectoderm, endoderm, and mesenchyme. Molecular-genetic investigations have revealed that interaction between epithelial and mesenchymal cells in the pharyngeal arches is essential for development of the tympanic membrane. We have recently reported that developmental mechanisms underlying the tympanic membrane seem to be different between mouse and chicken, suggesting that the tympanic membrane evolved independently in mammals and non-mammalian amniotes. In this review, we summarize previous studies of tympanic membrane formation in the mouse. We also discuss its formation in amniotes from an evolutionary point of view.
Asunto(s)
Membrana Timpánica/embriología , Animales , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Proteína Goosecoide/fisiología , Proteínas de Homeodominio/fisiología , Humanos , Factor de Transcripción MSX1/fisiología , Mamíferos , Membrana Timpánica/anomalías , Membrana Timpánica/metabolismoRESUMEN
INTRODUCTION: The vertebrate head is characterized by unsegmented head mesoderm the evolutionary origin of which remains enigmatic. The head mesoderm is derived from the rostral part of the dorsal mesoderm, which is regionalized anteroposteriorly during gastrulation. The basal chordate amphioxus resembles vertebrates due to the presence of somites, but it lacks unsegmented head mesoderm. Gastrulation in amphioxus occurs by simple invagination with little mesodermal involution, whereas in vertebrates gastrulation is organized by massive cell movements, such as involution, convergence and extension, and cell migration. RESULTS: To identify key developmental events in the evolution of the vertebrate head mesoderm, we compared anterior/posterior (A/P) patterning mechanisms of the dorsal mesoderm in amphioxus and vertebrates. The dorsal mesodermal genes gsc, bra, and delta are expressed in similar patterns in early embryos of both animals, but later in development, these expression domains become anteroposteriorly segregated only in vertebrates. Suppression of mesodermal involution in vertebrate embryos by inhibition of convergence and extension recapitulates amphioxus-like dorsal mesoderm formation. CONCLUSIONS: Reorganization of ancient mesoderm was likely involved in the evolution of the vertebrate head.
RESUMEN
INTRODUCTION: Somites, blocks of mesoderm tissue located on either side of the neural tube in the developing vertebrate embryo, are derived from mesenchymal cells in the presomitic mesoderm (PSM) and are a defining characteristic of vertebrates. In vertebrates, the somite segmental boundary is determined by Notch signalling and the antagonistic relationship of the downstream targets of Notch, Lfng, and Delta1 in the anterior PSM. The presence of somites in the basal chordate amphioxus (Branchiostoma floridae) indicates that the last common ancestor of chordates also had somites. However, it remains unclear how the genetic mechanisms underlying somitogenesis in vertebrates evolved from those in ancestral chordates. RESULTS: We demonstrate that during the gastrula stages of amphioxus embryos, BfFringe expression in the endoderm of the archenteron is detected ventrally to the ventral limit of BfDelta expression in the presumptive rostral somites along the dorsal/ventral (D/V) body axis. Suppression of Notch signalling by DAPT (a γ-secretase inhibitor that indirectly inhibits Notch) treatment from the late blastula stage reduced late gastrula stage expression of BfFringe in the endodermal archenteron and somite markers BfDelta and BfHairy-b in the mesodermal archenteron. Later in development, somites in the DAPT-treated embryo did not separate completely from the dorsal roof of the archenteron. In addition, clear segmental boundaries between somites were not detected in DAPT-treated amphioxus embryos at the larva stage. Similarly, in vertebrates, DAPT treatment from the late blastula stage in Xenopus (Xenopus laevis) embryos resulted in disruption of somite XlDelta-2 expression at the late gastrula stage. At the tail bud stage, the segmental expression of XlMyoD in myotomes was diminished. CONCLUSIONS: We propose that Notch signalling and the Fringe/Delta cassette for dorso-ventral boundary formation in the archenteron that separates somites from the gut in an amphioxus-like ancestral chordate were co-opted for anteroposterior segmental boundary formation in the vertebrate anterior PSM during evolution.
RESUMEN
The amniote middle ear is a classical example of the evolutionary novelty. Although paleontological evidence supports the view that mammals and diapsids (modern reptiles and birds) independently acquired the middle ear after divergence from their common ancestor, the developmental bases of these transformations remain unknown. Here we show that lower-to-upper jaw transformation induced by inactivation of the Endothelin1-Dlx5/6 cascade involving Goosecoid results in loss of the tympanic membrane in mouse, but causes duplication of the tympanic membrane in chicken. Detailed anatomical analysis indicates that the relative positions of the primary jaw joint and first pharyngeal pouch led to the coupling of tympanic membrane formation with the lower jaw in mammals, but with the upper jaw in diapsids. We propose that differences in connection and release by various pharyngeal skeletal elements resulted in structural diversity, leading to the acquisition of the tympanic membrane in two distinct manners during amniote evolution.