Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Therm Biol ; 65: 1-7, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28343561

RESUMEN

Medicinal leeches (Hirudo verbana) thermoregulate with respect to their sanguivorous feeding behavior. Immediate postprandial preferences are for warmer than their initial acclimation temperature (Ta, 21°C, Petersen et al. 2011), while unfed leeches have a lower preferred temperature (Tpref, 12.5°C). This may reduce energy expenditure and defer starvation if feeding opportunities are limited. Energetic benefits may have an associated cost if low temperatures reduce mobility and the ability to locate further hosts. These costs could be limited if mobility is unimpaired at low temperatures, or if acclimation can restore locomotor performance to the levels at Ta. The transition from Ta to the unfed Tpref significantly reduced speed and propulsive cycle frequency during swimming, and extension and retraction rates during crawling. Aerobic metabolic rate was also reduced from 0.20±0.03Wkg-1 at Ta to 0.10±0.03Wkg-1 at Tpref. The Q10 values of 1.7-2.9 for energetic and swimming parameters indicate a substantial temperature effect, although part of the decline in swimming performance can be attributed to temperature-related changes in water viscosity. 6 weeks at Ta resulted in no detectable acclimation in locomotor performance or aerobic metabolism. The energetic savings associated with a lower Tpref in unfed leeches effectively doubled the estimated time until depletion of energy reserves. Given that some mobility is still retained at Tpref, and that acclimation is in itself costly, the energetic benefits of selecting cooler temperatures between feedings may outweigh the costs associated with reduced locomotor performance.


Asunto(s)
Regulación de la Temperatura Corporal , Hirudo medicinalis/fisiología , Aclimatación , Animales , Frío , Metabolismo Energético , Conducta Alimentaria , Locomoción , Natación
2.
Biol Open ; 4(6): 743-51, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25910940

RESUMEN

Successful predator evasion is essential to the fitness of many animals. Variation in escape behaviour may be adaptive as it reduces predictability, enhancing escape success. High escape velocities and accelerations also increase escape success, but biomechanical factors likely constrain the behavioural range over which performance can be maximized. There may therefore be a trade-off between variation and performance during escape responses. We have used bluegill sunfish (Lepomis macrochirus) escape responses to examine this potential trade-off, determining the full repertoire of escape behaviour for individual bluegill sunfish and linking this to performance as indicated by escape velocity and acceleration. Fish escapes involve an initial C-bend of the body axis, followed by variable steering movements. These generate thrust and establish the escape direction. Directional changes during the initial C-bend were less variable than the final escape angle, and the most frequent directions were associated with high escape velocity. Significant inter-individual differences in escape angles magnified the overall variation, maintaining unpredictability from a predator perspective. Steering in the latter stages of the escape to establish the final escape trajectory also affected performance, with turns away from the stimulus associated with reduced velocity. This suggests that modulation of escape behaviour by steering may also have an associated performance cost. This has important implications for understanding the scope and control of intra- and inter-individual variation in escape behaviour and the associated costs and benefits.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda