RESUMEN
The newly commissioned Orion laser system has been used to study dense plasmas created by a combination of short pulse laser heating and compression by laser driven shocks. Thus the plasma density was systematically varied between 1 and 10 g/cc by using aluminum samples buried in plastic foils or diamond sheets. The aluminum was heated to electron temperatures between 500 and 700 eV allowing the plasma conditions to be diagnosed by K-shell emission spectroscopy. The K-shell spectra show the effect of the ionization potential depression as a function of density. The data are compared to simulated spectra which account for the change in the ionization potential by the commonly used Stewart and Pyatt prescription and an alternative due to Ecker and Kröll suggested by recent x-ray free-electron laser experiments. The experimental data are in closer agreement with simulations using the model of Stewart and Pyatt.
RESUMEN
During the past few years, the Orion high-resolution x-ray spectrometers have been successful tools for measuring x-ray spectra from plasmas generated in the Orion laser facility. Duplicate spectrometers also operate successfully at the Livermore EBIT-I and SuperEBIT electron beam ion traps for measuring x-ray polarization. We have recently implemented very high-quality, optically bonded, spherically bent quartz crystals to remove the structure in the x-ray image that had been observed in earlier measurements. The structure had been caused by focusing defects and limited the accuracy of our measurements. We present before and after images that show a drastic improvement. We, furthermore, have implemented a spherically bent potassium acid phthalate (KAP) crystal on one of our spectrometers. The KAP crystal was prepared in a similar fashion, and we present measurements of the N Ly-ß and Ne Lyß lines taken in first- and second-order reflections at 600 and 1200 eV, respectively. These measurements confirm that KAP crystals can be produced at a quality suitable for extending the spectral coverage to wavelengths longer than those accessible by different quartz crystals, especially those that cover the astrophysically important lines of iron.
RESUMEN
Over the past few years, work has been conducted at AWE to accurately characterize x-ray diffraction crystals to allow for absolute measurements of x-ray emission for our Orion opacity campaigns. Diffraction crystals are used in spectrometers on Orion to record the dispersed spectral features emitted by the laser produced plasma to obtain a measurement of the plasma conditions. Previously, based on a Manson x-ray source, our calibration system struggled to attain a high signal at the low energies required in calibration for the use of aluminum as a tracer for higher atomic number experiments. Here, we present data from the newly commissioned CTX400 x-ray source, a twin anode water cooled system, showing it to be a bright source even for â¼1 keV energies. Rocking curve measurements for three of the most commonly used crystals, namely, pentaerythritol, cesium acid phthalate, and germanium, are presented for both convex and flat forms.
RESUMEN
The Orion high-resolution x-ray (OHREX) spectrometer has been a successful tool for measuring the shapes of density-broadened spectral lines produced in short-pulse heated plasmas at the Orion laser facility. We have recently outfitted the instrument with a charge-couple device (CCD) camera, which greatly increased the accuracy with which we can perform line-shift measurements. Because OHREX is located on the outside of the Orion target chamber, no provisions for the shielding of electromagnetic pulses are required. With the CCD, we obtained a higher signal-to-noise ratio than we previously obtained with an image-plate detector. This allowed us to observe structure in the image produced by the diffraction from the two OHREX crystals, which was highly reproducible from shot to shot. This structure will ultimately limit the accuracy of our spectroscopic measurements.
RESUMEN
We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.