RESUMEN
Previous research has shown that humans struggle to interpret multiple perceptual signals when the information provided by these signals is incongruent. In the context of olfactory-visual integration, behavioral and neuronal differences in response to congruent and incongruent stimulus pairs have been established. Here, we explored functional connectivity of the human brain with regard to the perception of congruent and incongruent food stimuli. Participants were simultaneously presented olfactory and visual stimuli of 4 different food objects, 2 healthy and 2 unhealthy objects. Stimulus pairs were grouped into "congruent" (olfactory and visual presentation of the same object), "semi-congruent" (stimuli of similar "healthiness"), and "incongruent" (healthy-unhealthy stimulus combination). Using functional magnetic resonance imaging and psychophysiological interaction (PPI) analyses, we revealed part of a neural network, the nodes of which show differential connectivity depending on the level of congruency of the presented stimulus combinations. This network relies strongly on, mostly left, inferior frontal gyrus. The analysis of such network transcends standard subtractive designs and indicates the need for more detailed formulations of neuronal models and increased specificity in functional imaging.
Asunto(s)
Mapeo Encefálico , Percepción Olfatoria/fisiología , Semántica , Percepción Visual/fisiología , Adulto , Femenino , Alimentos , Humanos , Imagen por Resonancia Magnética , Masculino , Estimulación Física , Proyectos Piloto , Psicofísica , Respiración , Adulto JovenRESUMEN
Obesity is a major health concern in modern societies. Although decreased physical activity and enhanced intake of high-caloric foods are important risk factors for developing obesity, human behavior during eating also plays a role. Previous studies have shown that distraction while eating increases food intake and leads to impaired processing of food stimuli. As olfaction is the most important sense involved in flavor perception, we used functional magnetic resonance imaging techniques to investigate the influence of cognitive memory load on olfactory perception and processing. Low- and high-caloric food odors were presented in combination with either low or high cognitive loads utilizing a memory task. The efficacy of the memory task was verified by a decrease in participant recall accuracy and an increase in skin conductance response during high cognitive load. Our behavioral data reveal a diminished perceived intensity for low- but not high-caloric food odors during high cognitive load. For low-caloric food odors, bilateral orbitofrontal (OFC) and piriform cortices (pirC) showed significantly lower activity during high compared with low cognitive load. For high-caloric food odors, a similar effect was established in pirC, but not in OFC. Insula activity correlates with higher intensity ratings found during the low cognitive load condition. We conclude lower activity in pirC and OFC to be responsible for diminished intensity perception, comparable to results in olfactory impaired patients and elderly. Further studies should investigate the influence of olfactory/gustatory intensities on food choices under distraction with special regards to low-caloric food.
Asunto(s)
Cognición/fisiología , Percepción Olfatoria/fisiología , Olfato/fisiología , Adulto , Conducta , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Piriforme/fisiología , Corteza Prefrontal/fisiología , Adulto JovenRESUMEN
Priming describes the principle of modified stimulus perception that occurs due to a previously presented stimulus. Although we have begun to understand the mechanisms of crossmodal priming, the concept of intramodal olfactory priming remains relatively unexplored. Therefore, we applied positive and negative odors using respiration-triggered olfactory stimulation (RETROS), enabling us to record the skin conductance response (SCR) and breathing data without a crossmodal cueing error and measure reaction times (RTs) for olfactory tasks. RT, SCR, and breathing data revealed that negative odors were perceived significantly more arousing than positive ones. In a second experiment, 2 odors were applied during consecutive respirations. Here, we observed intramodal olfactory priming effects: A negative odor preceded by a positive odor was rated as more pleasant than when the same odor was preceded by a negative odor. Additionally, a longer identification RT was found for the second compared with the first odor. We interpret this as increased "perceptual load" due to incomplete first odor processing while the second odor was presented. Furthermore, intramodal priming can be considered a possible reason for the increase of identification RT. The use of RETROS led to these novel insights into olfactory processing beyond crossmodal interaction by providing a noncued unimodal olfactory test, and therefore, RETROS can be used in the experimental design of future olfactory studies.