Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Pathog ; 19(7): e1011233, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37463183

RESUMEN

Gram-negative bacteremia is a major cause of global morbidity involving three phases of pathogenesis: initial site infection, dissemination, and survival in the blood and filtering organs. Klebsiella pneumoniae is a leading cause of bacteremia and pneumonia is often the initial infection. In the lung, K. pneumoniae relies on many factors like capsular polysaccharide and branched chain amino acid biosynthesis for virulence and fitness. However, mechanisms directly enabling bloodstream fitness are unclear. Here, we performed transposon insertion sequencing (TnSeq) in a tail-vein injection model of bacteremia and identified 58 K. pneumoniae bloodstream fitness genes. These factors are diverse and represent a variety of cellular processes. In vivo validation revealed tissue-specific mechanisms by which distinct factors support bacteremia. ArnD, involved in Lipid A modification, was required across blood filtering organs and supported resistance to soluble splenic factors. The purine biosynthesis enzyme PurD supported liver fitness in vivo and was required for replication in serum. PdxA, a member of the endogenous vitamin B6 biosynthesis pathway, optimized replication in serum and lung fitness. The stringent response regulator SspA was required for splenic fitness yet was dispensable in the liver. In a bacteremic pneumonia model that incorporates initial site infection and dissemination, splenic fitness defects were enhanced. ArnD, PurD, DsbA, SspA, and PdxA increased fitness across bacteremia phases and each demonstrated unique fitness dynamics within compartments in this model. SspA and PdxA enhanced K. pnuemoniae resistance to oxidative stress. SspA, but not PdxA, specifically resists oxidative stress produced by NADPH oxidase Nox2 in the lung, spleen, and liver, as it was a fitness factor in wild-type but not Nox2-deficient (Cybb-/-) mice. These results identify site-specific fitness factors that act during the progression of Gram-negative bacteremia. Defining K. pneumoniae fitness strategies across bacteremia phases could illuminate therapeutic targets that prevent infection and sepsis.


Asunto(s)
Bacteriemia , Infecciones por Klebsiella , Neumonía , Ratones , Animales , Klebsiella pneumoniae/genética , Pulmón , Bacteriemia/genética , Estrés Oxidativo , Infecciones por Klebsiella/genética
2.
PLoS Pathog ; 17(4): e1009537, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33930099

RESUMEN

Klebsiella pneumoniae (Kp) is an important cause of healthcare-associated infections, which increases patient morbidity, mortality, and hospitalization costs. Gut colonization by Kp is consistently associated with subsequent Kp disease, and patients are predominantly infected with their colonizing strain. Our previous comparative genomics study, between disease-causing and asymptomatically colonizing Kp isolates, identified a plasmid-encoded tellurite (TeO3-2)-resistance (ter) operon as strongly associated with infection. However, TeO3-2 is extremely rare and toxic to humans. Thus, we used a multidisciplinary approach to determine the biological link between ter and Kp infection. First, we used a genomic and bioinformatic approach to extensively characterize Kp plasmids encoding the ter locus. These plasmids displayed substantial variation in plasmid incompatibility type and gene content. Moreover, the ter operon was genetically independent of other plasmid-encoded virulence and antibiotic resistance loci, both in our original patient cohort and in a large set (n = 88) of publicly available ter operon-encoding Kp plasmids, indicating that the ter operon is likely playing a direct, but yet undescribed role in Kp disease. Next, we employed multiple mouse models of infection and colonization to show that 1) the ter operon is dispensable during bacteremia, 2) the ter operon enhances fitness in the gut, 3) this phenotype is dependent on the colony of origin of mice, and 4) antibiotic disruption of the gut microbiota eliminates the requirement for ter. Furthermore, using 16S rRNA gene sequencing, we show that the ter operon enhances Kp fitness in the gut in the presence of specific indigenous microbiota, including those predicted to produce short chain fatty acids. Finally, administration of exogenous short-chain fatty acids in our mouse model of colonization was sufficient to reduce fitness of a ter mutant. These findings indicate that the ter operon, strongly associated with human infection, encodes factors that resist stress induced by the indigenous gut microbiota during colonization. This work represents a substantial advancement in our molecular understanding of Kp pathogenesis and gut colonization, directly relevant to Kp disease in healthcare settings.


Asunto(s)
Microbioma Gastrointestinal/genética , Intestinos/microbiología , Klebsiella/genética , Plásmidos/genética , Animales , Bacteriemia/genética , Proteínas Bacterianas/genética , Femenino , Aptitud Genética/fisiología , Sitios Genéticos/fisiología , Genoma Bacteriano , Interacciones Huésped-Patógeno/genética , Resistencia a la Kanamicina/genética , Infecciones por Klebsiella/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Operón/genética , Especificidad de Órganos/genética , Virulencia/genética , beta-Lactamasas/genética
3.
Clin Microbiol Rev ; 34(2)2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33692149

RESUMEN

Gram-negative bacteremia is a devastating public health threat, with high mortality in vulnerable populations and significant costs to the global economy. Concerningly, rates of both Gram-negative bacteremia and antimicrobial resistance in the causative species are increasing. Gram-negative bacteremia develops in three phases. First, bacteria invade or colonize initial sites of infection. Second, bacteria overcome host barriers, such as immune responses, and disseminate from initial body sites to the bloodstream. Third, bacteria adapt to survive in the blood and blood-filtering organs. To develop new therapies, it is critical to define species-specific and multispecies fitness factors required for bacteremia in model systems that are relevant to human infection. A small subset of species is responsible for the majority of Gram-negative bacteremia cases, including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii The few bacteremia fitness factors identified in these prominent Gram-negative species demonstrate shared and unique pathogenic mechanisms at each phase of bacteremia progression. Capsule production, adhesins, and metabolic flexibility are common mediators, whereas only some species utilize toxins. This review provides an overview of Gram-negative bacteremia, compares animal models for bacteremia, and discusses prevalent Gram-negative bacteremia species.


Asunto(s)
Acinetobacter baumannii , Bacteriemia , Infecciones por Bacterias Gramnegativas , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Humanos , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana
4.
Infect Immun ; 90(7): e0022422, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35762751

RESUMEN

Klebsiella pneumoniae is a leading cause of Gram-negative bacteremia, which is a major source of morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site infection, dissemination to the blood, and bloodstream survival. Because K. pneumoniae is a leading cause of health care-associated pneumonia, the lung is a common primary infection site leading to secondary bacteremia. K. pneumoniae factors essential for lung fitness have been characterized, but those required for subsequent bloodstream infection are unclear. To identify K. pneumoniae genes associated with dissemination and bloodstream survival, we combined previously and newly analyzed insertion site sequencing (InSeq) data from a murine model of bacteremic pneumonia. This analysis revealed the gene gmhB as important for either dissemination from the lung or bloodstream survival. In Escherichia coli, GmhB is a partially redundant enzyme in the synthesis of ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in K. pneumoniae, an isogenic knockout strain (ΔgmhB) and complemented mutant were generated. During pneumonia, GmhB did not contribute to lung fitness and did not alter normal immune responses. However, GmhB enhanced bloodstream survival in a manner independent of serum susceptibility, specifically conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB was also required by K. pneumoniae, E. coli, and Citrobacter freundii for optimal fitness in the spleen and liver. Together, this study identifies GmhB as a conserved Gram-negative bacteremia fitness factor that acts through LPS-mediated mechanisms to enhance fitness in blood-filtering organs.


Asunto(s)
Bacteriemia , Infecciones por Klebsiella , Adenosina Difosfato , Animales , Bacteriemia/genética , Escherichia coli/genética , Heptosas , Klebsiella pneumoniae/genética , Lipopolisacáridos , Ratones
5.
Int J Mol Sci ; 20(12)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242568

RESUMEN

Autoantibodies against citrullinated proteins are a hallmark of rheumatoid arthritis, a destructive inflammatory arthritis. Peptidylarginine deiminase 4 (PAD4) has been hypothesized to contribute to rheumatoid arthritis by citrullinating histones to induce neutrophil extracellular traps (NETs), which display citrullinated proteins that are targeted by autoantibodies to drive inflammation and arthritis. Consistent with this theory, PAD4-deficient mice have reduced NETs, autoantibodies, and arthritis. However, PAD4's role in human rheumatoid arthritis is less clear. Here, we determine if single nucleotide polymorphism rs2240335 in PADI4, whose G allele is associated with reduced PAD4 in neutrophils, correlates with NETs, anti-histone antibodies, and rheumatoid arthritis susceptibility in North Americans. Control and rheumatoid arthritis subjects, divided into anti-cyclic citrullinated peptide (CCP) antibody positive and negative groups, were genotyped at rs2240335. In homozygotes, in vitro NETosis was quantified in immunofluorescent images and circulating NET and anti-histone antibody levels by enzyme linked immunosorbent assay (ELISA). Results were compared by t-test and correlation of rheumatoid arthritis diagnosis with rs2240335 by Armitage trend test. NET levels did not significantly correlate with genotype. G allele homozygotes in the CCP- rheumatoid arthritis group had reduced anti-native and anti-citrullinated histone antibodies. However, the G allele conferred increased risk for rheumatoid arthritis diagnosis, suggesting a complex role for PAD4 in human rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide/etiología , Autoanticuerpos/inmunología , Susceptibilidad a Enfermedades , Histonas/inmunología , Polimorfismo de Nucleótido Simple , Arginina Deiminasa Proteína-Tipo 4/genética , Alelos , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/metabolismo , Autoanticuerpos/sangre , Autoantígenos/inmunología , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Genotipo , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo
6.
Biol Proced Online ; 20: 7, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29618953

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs), extracellular structures composed of decondensed chromatin and antimicrobial molecules, are released in a process called NETosis. NETs, which are part of normal host defense, have also been implicated in multiple human diseases. Unfortunately, methods for quantifying NETs have limitations which constrain the study of NETs in disease. Establishing optimal methods for NET quantification holds the potential to further elucidate the role of NETs in normal and pathologic processes. RESULTS: To better quantify NETs and NET-like structures, we created DNA Area and NETosis Analysis (DANA), a novel ImageJ/Java based program which provides a simple, semi-automated approach to quantify NET-like structures and DNA area. DANA can analyze many fluorescent microscope images at once and provides data on a per cell, per image, and per sample basis. Using fluorescent microscope images of Sytox-stained human neutrophils, DANA quantified a similar frequency of NET-like structures to the frequency determined by two different individuals counting by eye, and in a fraction of the time. As expected, DANA also detected increased DNA area and frequency of NET-like structures in neutrophils from subjects with rheumatoid arthritis as compared to control subjects. Using images of DAPI-stained murine neutrophils, DANA (installed by an individual with no programming background) gave similar frequencies of NET-like structures as the frequency of NETs determined by two individuals counting by eye. Further, DANA quantified more NETs in stimulated murine neutrophils compared to unstimulated, as expected. CONCLUSIONS: DANA provides a means to quantify DNA decondensation and the frequency of NET-like structures using a variety of different fluorescent markers in a rapid, reliable, simple, high-throughput, and cost-effective manner making it optimal to assess NETosis in a variety of conditions.

7.
Front Immunol ; 15: 1167362, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476240

RESUMEN

Introduction: Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis, but the sources of citrullinated antigens as well as which peptidylarginine deiminases (PADs) are required for their production remain incompletely defined. Here, we investigated if macrophage extracellular traps (METs) could be a source of citrullinated proteins bound by APCAs, and if their formation requires PAD2 or PAD4. Methods: Thioglycolate-induced peritoneal macrophages from wild-type, PAD2-/-, and PAD4-/- mice or human peripheral blood-derived M1 macrophages were activated with a variety of stimulants, then fixed and stained with DAPI and either anti-citrullinated histone H4 (citH4) antibody or sera from ACPA+ or ACPA- rheumatoid arthritis subjects. METs were visualized by immunofluorescence, confirmed to be extracellular using DNase, and quantified. Results: We found that ionomycin and monosodium urate crystals reliably induced murine citH4+ METs, which were reduced in the absence of PAD2 and lost in the absence of PAD4. Also, IgG from ACPA+, but not ACPA-, rheumatoid arthritis sera bound to murine METs, and in the absence of PAD2 or PAD4, ACPA-bound METs were lost. Finally, ionomycin induced human METs that are citH4+ and ACPA-bound. Discussion: Thus, METs may contribute to the pool of citrullinated antigens bound by ACPAs in a PAD2- and PAD4-dependent manner, providing new insights into the targets of immune tolerance loss in rheumatoid arthritis.


Asunto(s)
Ácidos Aminosalicílicos , Artritis Reumatoide , Trampas Extracelulares , Humanos , Ratones , Animales , Desiminasas de la Arginina Proteica/metabolismo , Autoanticuerpos , Arginina Deiminasa Proteína-Tipo 4 , Ionomicina/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo
8.
bioRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38853822

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen and an important cause of pneumonia, bacteremia, and urinary tract infection. K. pneumoniae infections are historically associated with diabetes mellitus. There is a fundamental gap in our understanding of how diabetes mellitus, specifically type 2 diabetes, influences K. pneumoniae pathogenesis. K. pneumoniae pathogenesis is a multifactorial process that often begins with gut colonization, followed by an escape from the gut to peripheral sites, leading to host damage and infection. We hypothesized that type 2 diabetes enhances K. pneumoniae pathogenesis. To test this, we used well-established mouse models of K. pneumoniae colonization and lung infection in conjunction with a mouse model of spontaneous type 2 diabetes mellitus (T2DM). We show that T2DM enhances susceptibility to both K. pneumoniae colonization and infection. The enhancement of gut colonization is dependent on T2DM-induced modulation of the gut microbiota community structure. In contrast, lung infection is exacerbated by the increased availability of amino acids in the lung, which is associated with higher levels of vascular endothelial growth factor. These data lay the foundation for mechanistic interrogation of the relationship between K. pneumoniae pathogenesis and type 2 diabetes mellitus, and explicitly establish T2DM as a risk factor for K. pneumoniae disease.

9.
mSphere ; 8(6): e0052123, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37874135

RESUMEN

Caitlyn Holmes works in the field of bacterial pathogenesis and host-pathogen interactions. In this mSphere of Influence article, she reflects on how the papers "Innate Lymphocyte/Ly6Chi Monocyte Crosstalk Promotes Klebsiella pneumoniae Clearance" by Xiong et al. (H. Xiong, J. W. Keith, D. W. Samilo, R. A. Carter, et al., Cell 165:679-89, 2016, https://doi.org/10.1016/j.cell.2016.03.017) and "Dual-Track Clearance of Circulating Bacteria Balances Rapid Restoration of Blood Sterility with Induction of Adaptive Immunity" by Broadley et al. (S. P. Broadley, A. Plaumann, R. Coletti, C. Lehmann, et al., Cell Host Microbe 20:36-48, 2016, https://doi.org/10.1016/j.chom.2016.05.023) impacted her research by highlighting the tangled web of immune responses that influence bacterial bloodstream infections.


Asunto(s)
Infecciones Bacterianas , Sepsis , Humanos , Bacterias , Interacciones Huésped-Patógeno , Monocitos
10.
Nat Commun ; 13(1): 4459, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915063

RESUMEN

Members of the Klebsiella pneumoniae species complex frequently colonize the gut and colonization is associated with subsequent infection. To identify genes associated with progression from colonization to infection, we undertook a case-control comparative genomics study. Concordant cases (N = 85), where colonizing and invasive isolates were identical strain types, were matched to asymptomatically colonizing controls (N = 160). Thirty-seven genes are associated with infection, 27 of which remain significant following adjustment for patient variables and bacterial phylogeny. Infection-associated genes are not previously characterized virulence factors, but instead a diverse group of stress resistance, regulatory and antibiotic resistance genes, despite careful adjustment for antibiotic exposure. Many genes are plasmid borne, and for some, the relationship with infection is mediated by gut dominance. Five genes were validated in a geographically-independent cohort of colonized patients. This study identifies several genes reproducibly associated with progression to infection in patients colonized by diverse Klebsiella.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Genómica , Humanos , Klebsiella/genética , Infecciones por Klebsiella/genética , Infecciones por Klebsiella/microbiología , Plásmidos/genética
11.
Arthritis Rheumatol ; 72(2): 262-272, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31397047

RESUMEN

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF) are commonly present in rheumatoid arthritis (RA) without a clear rationale for their coexistence. Moreover, autoantibodies develop against proteins with different posttranslational modifications and native proteins without obvious unifying characteristics of the antigens. We undertook this study to broadly evaluate autoantibody binding in seronegative and seropositive RA to identify novel features of reactivity. METHODS: An array was created using a total of 172,828 native peptides, citrulline-containing peptides, and homocitrulline-containing peptides derived primarily from proteins citrullinated in the rheumatoid joint. IgG and IgM binding to peptides were compared between cyclic citrullinated peptide (CCP)-positive RF+, CCP+RF-, CCP-RF+, and CCP-RF- serum from RA patients (n = 48) and controls (n = 12). IgG-bound and endogenously citrullinated peptides were analyzed for amino acid patterns and predictors of intrinsic disorder, i.e., unstable 3-dimensional structure. Binding to IgG-derived peptides was specifically evaluated. Enzyme-linked immunosorbent assay confirmed key results. RESULTS: Broadly, CCP+RF+ patients had high citrulline-specific IgG binding to array peptides and CCP+RF- and CCP-RF+ patients had modest citrulline-specific IgG binding (median Z scores 3.02, 1.42, and 0.75, respectively; P < 0.0001). All RA groups had low homocitrulline-specific binding. CCP+RF+ patients had moderate IgG binding to native peptides (median Z score 2.38; P < 0.0001). The highest IgG binding was to citrulline-containing peptides, irrespective of protein identity, especially if citrulline was adjacent to glycine or serine, motifs also seen in endogenous citrullination in the rheumatoid joint. Highly bound peptides had multiple features predictive of disorder. IgG from CCP+RF+ patients targeted citrulline-containing IgG-derived peptides. CONCLUSION: Disordered antigens, which are frequently citrullinated, and common epitopes for ACPAs and RF are potentially unifying features for RA autoantibodies.


Asunto(s)
Anticuerpos Antiproteína Citrulinada/sangre , Artritis Reumatoide/sangre , Artritis Reumatoide/inmunología , Autoantígenos/sangre , Autoantígenos/inmunología , Epítopos/inmunología , Factor Reumatoide/sangre , Femenino , Humanos , Masculino
12.
J Immunol Res ; 2019: 2160192, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30993117

RESUMEN

In rheumatoid arthritis, an autoimmune inflammatory arthritis, citrullinated proteins are targeted by autoantibodies and thus thought to drive disease. Neutrophil extracellular traps (NETs) are a source of citrullinated proteins and are increased in rheumatoid arthritis and therefore also implicated in disease pathogenesis. However, not all NETs are citrullinated. One theory aiming to clarify the intersection of citrullination, NETs, and rheumatoid arthritis suggests that specific stimuli induce different types of NETs defined by citrullination status. However, most studies do not evaluate uncitrullinated NETs, only citrullinated or total NETs. Further, the requirement for peptidylarginine deiminase (PAD) 2 and 4, two important citrullinating enzymes in neutrophils and rheumatoid arthritis, in the formation of different NETs has not been clearly defined. To determine if specific stimulants induce citrullinated or uncitrullinated NETs and if those structures require PAD2 or PAD4, human and murine neutrophils, including from PAD4-/- and PAD2-/- mice, were stimulated in vitro and NETs imaged and quantified. In humans, phorbol myristate acetate (PMA), ionomycin, monosodium urate (MSU), and Candida albicans induced NETs with MSU and C. albicans inducing primarily citrullinated, PMA primarily uncitrullinated, and ionomycin a mix of NETs. Only ionomycin and C. albicans were strong inducers of NETs in mice with ionomycin-induced NETs mostly citrullinated and C. albicans-induced NETs a mix of citrullinated and uncitrullinated. Interestingly, no stimulus induced exclusively citrullinated or uncitrullinated NETs. Further, PAD4 was required for citrullinated NETs only, whereas PAD2 was not required for either NET in mice. Therefore, specific stimuli induce varying proportions of both citrullinated and uncitrullinated NETs with different requirements for PAD4. These findings highlight the complexity of NET formation and the need to further define the mechanisms by which different NETs form and their implications for autoimmune disease.


Asunto(s)
Citrulinación , Trampas Extracelulares/inmunología , Neutrófilos/inmunología , Desiminasas de la Arginina Proteica/inmunología , Animales , Artritis Reumatoide/inmunología , Citrulina , Humanos , Ionomicina/farmacología , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Neutrófilos/efectos de los fármacos , Arginina Deiminasa Proteína-Tipo 2 , Acetato de Tetradecanoilforbol/farmacología , Ácido Úrico/farmacología
13.
PLoS One ; 14(5): e0217221, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31136605

RESUMEN

BACKGROUND: The antibody response to pertussis vaccination in rheumatoid arthritis is unknown, a concerning omission given the relatively low efficacy of the pertussis vaccine, a rise in pertussis infections, and a general increased susceptibility to infection in rheumatoid arthritis. Additionally, the contributions from an intrinsically dysregulated immune system in rheumatoid arthritis and immune-suppressing medications to the response to pertussis vaccination is poorly defined. This study examines antibody titers against pertussis in vaccinated rheumatoid arthritis patients and controls as well as evaluates potential contributions from demographic factors, immune suppressing medications, and reactivity against citrullinated pertussis. METHODS: Serum IgG titers against native and citrullinated pertussis and tetanus were quantified by enzyme-linked immunosorbent assay in rheumatoid arthritis subjects and controls who were vaccinated within 10 years. Titers were compared by t-test and percent immunity by Fisher's exact test. Multivariable logistic regression was used to identify clinical factors that correlate with native pertussis titers. RESULTS: Compared to controls, rheumatoid arthritis subjects had lower titers against pertussis, but not tetanus, and reduced immunity to pertussis. These results were even more prominent at 5-10 years post-vaccination, when rheumatoid arthritis patients had 50% lower titers than controls and 2.5x more rheumatoid arthritis subjects were not considered immune to pertussis. Multiple logistic regression demonstrated that female sex and methotrexate use, but not TNF inhibiting medications, correlated with reduced immunity to pertussis. Finally, rheumatoid arthritis patients had higher IgG titers against citrullinated pertussis than native pertussis. CONCLUSIONS: Pertussis titers are lower in vaccinated rheumatoid arthritis patients with evidence for contributions from female sex, a citrulline-biased immune response, and methotrexate use.


Asunto(s)
Artritis Reumatoide/inmunología , Bordetella pertussis/inmunología , Citrulina/farmacología , Inmunoglobulina G/sangre , Metotrexato/farmacología , Vacuna contra la Tos Ferina/inmunología , Adolescente , Artritis Reumatoide/sangre , Artritis Reumatoide/tratamiento farmacológico , Bordetella pertussis/efectos de los fármacos , Estudios de Casos y Controles , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunosupresores/farmacología , Masculino , Vacuna contra la Tos Ferina/administración & dosificación , Tos Ferina/inmunología , Tos Ferina/prevención & control
14.
JCI Insight ; 4(22)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31723060

RESUMEN

Dysregulated citrullination, a unique form of posttranslational modification catalyzed by the peptidylarginine deiminases (PADs), has been observed in several human diseases, including rheumatoid arthritis. However, the physiological roles of PADs in the immune system are still poorly understood. Here, we report that global inhibition of citrullination enhances the differentiation of type 2 helper T (Th2) cells but attenuates the differentiation of Th17 cells, thereby increasing the susceptibility to allergic airway inflammation. This effect on Th cells is due to inhibition of PAD2 but not PAD4. Mechanistically, PAD2 directly citrullinates GATA3 and RORγt, 2 key transcription factors determining the fate of differentiating Th cells. Citrullination of R330 of GATA3 weakens its DNA binding ability, whereas citrullination of 4 arginine residues of RORγt strengthens its DNA binding. Finally, PAD2-deficient mice also display altered Th2/Th17 immune response and heightened sensitivity to allergic airway inflammation. Thus, our data highlight the potential and caveat of PAD2 as a therapeutic target of Th cell-mediated diseases.


Asunto(s)
Citrulinación/inmunología , Arginina Deiminasa Proteína-Tipo 2 , Células Th17 , Células Th2 , Animales , Humanos , Pulmón/metabolismo , Pulmón/patología , Ratones , Arginina Deiminasa Proteína-Tipo 2/inmunología , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Células Th2/inmunología , Células Th2/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda