Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Water Sci Technol ; 90(4): 1239-1249, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39215735

RESUMEN

The fast-growing global population has led to a substantial increase in food production, which generates large volumes of wastewater during the process. Despite most industrial wastewater being discharged at lower ambient temperatures (<20 °C), majority of the high-rate anaerobic reactors are operated at mesophilic temperatures (>30 °C). High-rate low-temperature anaerobic digestion (LtAD) has proven successful in treating industrial wastewater both at laboratory and pilot scales, boasting efficient organic removal and biogas production. In this study, we demonstrated the feasibility of two full-scale high-rate LtAD bioreactors treating meat processing and dairy wastewater, and the microbial communities in both reactors were examined. Both reactors exhibited rapid start-up, achieving considerable chemical oxygen demand (COD) removal efficiencies (total COD removal >80%) and generating high-quality biogas (CH4% in biogas >75%). Long-term operations (6-12 months) underscored the robustness of LtAD bioreactors even during winter periods (average temperature <12 °C), as evidenced by sustained high COD removal rates (total COD removal >80%). The stable performance was underpinned by a resilient microbial community comprising active acetoclastic methanogens, hydrolytic, and fermentative bacteria. These findings underscore the feasibility of high-rate low-temperature anaerobic wastewater treatment, offering promising solutions to the zero-emission wastewater treatment challenge.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos , Aguas Residuales , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Temperatura , Análisis de la Demanda Biológica de Oxígeno , Bacterias/metabolismo , Bacterias/clasificación , Biocombustibles , Residuos Industriales
2.
Environ Sci Technol ; 56(8): 4749-4775, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35357187

RESUMEN

Several problems associated with the presence of lipids in wastewater treatment plants are usually overcome by removing them ahead of the biological treatment. However, because of their high energy content, waste lipids are interesting yet challenging pollutants in anaerobic wastewater treatment and codigestion processes. The maximal amount of waste lipids that can be sustainably accommodated, and effectively converted to methane in anaerobic reactors, is limited by several problems including adsorption, sludge flotation, washout, and inhibition. These difficulties can be circumvented by appropriate feeding, mixing, and solids separation strategies, provided by suitable reactor technology and operation. In recent years, membrane bioreactors and flotation-based bioreactors have been developed to treat lipid-rich wastewater. In parallel, the increasing knowledge on the diversity of complex microbial communities in anaerobic sludge, and on interspecies microbial interactions, contributed to extend the knowledge and to understand more precisely the limits and constraints influencing the anaerobic biodegradation of lipids in anaerobic reactors. This critical review discusses the most important principles underpinning the degradation process and recent key discoveries and outlines the current knowledge coupling fundamental and applied aspects. A critical assessment of knowledge gaps in the field is also presented by integrating sectorial perspectives of academic researchers and of prominent developers of anaerobic technology.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Lípidos , Metano/metabolismo , Aguas Residuales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda