Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
ACS Infect Dis ; 10(5): 1602-1611, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38592927

RESUMEN

Antibiotic resistance is an alarming public health concern that affects millions of individuals across the globe each year. A major challenge in the development of effective antibiotics lies in their limited ability to permeate cells, noting that numerous susceptible antibiotic targets reside within the bacterial cytosol. Consequently, improving the cellular permeability is often a key consideration during antibiotic development, underscoring the need for reliable methods to assess the permeability of molecules across cellular membranes. Currently, methods used to measure permeability often fail to discriminate between the arrival within the cytoplasm and the overall association of molecules with the cell. Additionally, these techniques typically possess throughput limitations. In this work, we describe a luciferase-based assay designed for assessing the permeability of molecules in the cytosolic compartment of Gram-negative bacteria. Our findings demonstrate a robust system that can elucidate the kinetics of intracellular antibiotic accumulation in live bacterial cells in real time.


Asunto(s)
Antibacterianos , Citosol , Escherichia coli , Mediciones Luminiscentes , Antibacterianos/farmacología , Escherichia coli/metabolismo , Escherichia coli/genética , Citosol/metabolismo , Citosol/química , Pruebas de Sensibilidad Microbiana , Permeabilidad de la Membrana Celular
2.
bioRxiv ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38106213

RESUMEN

Antibiotic resistance is an alarming public health concern that affects millions of individuals across the globe each year. A major challenge in the development of effective antibiotics lies in their limited ability to permeate into cells, noting that numerous susceptible antibiotic targets reside within the bacterial cytosol. Consequently, improving cellular permeability is often a key consideration during antibiotic development, underscoring the need for reliable methods to assess the permeability of molecules across cellular membranes. Currently, methods used to measure permeability often fail to discriminate between arrival within the cytoplasm and the overall association of molecules with the cell. Additionally, these techniques typically possess throughput limitations. In this work, we describe a luciferase-based assay designed for assessing the permeability of molecules into the cytosolic compartment of Gram-negative bacteria. Our findings demonstrate a robust system that can elucidate the kinetics of intracellular antibiotics accumulation in live bacterial cells in real time.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda