Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
RSC Adv ; 10(23): 13759-13765, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35492985

RESUMEN

Temperature usually occupies a crucial position in the construction of chiral compounds. By controlling the temperature of the reaction system, chiral and non-chiral compounds can be designed and synthesized. Given the above, three new chiral and non-chiral compounds based on copper(ii) monosubstituted polyoxoanions and Cu(en) complexes (en = ethylenediamine), d/l-[Cu(H2O)(en)2]2{[Cu(H2O)2(en)][SiCuW11O39]}·5H2O (1, d-1 and l-1) and [Cu(H2O)(en)2]{[Cu(en)2]2[SiCuW11O39]}·2.5H2O (2), were successfully synthesized under hydrothermal conditions. The main synthesis conditions of compound 1 (d-1 and l-1) and compound 2 are the same, however, the only difference is that the reaction temperatures are 80 °C and 140 °C, respectively. What's more, compounds 1 and 2 can form a 1D chiral chain by Cu-O and W/Cu-O-W/Cu bonds, respectively, and further obtain a 3D-supramolecular framework through hydrogen bonding interaction. Meanwhile, due to the asymmetry of chiral compound 1, optical second-harmonic generation (SHG) was used to investigate the second-order nonlinear optical effect and it was found that the observed SHG efficiency of compound 1 is 0.3 times that of urea. To further investigate the chiral properties, d-1 and l-1 were used in the electrochemical enantioselective sensing of d-/l-tartaric acid (d-/l-tart) molecules, respectively, which demonstrates that d-1 and l-1 have a good application prospect in sensing chiral substances.

2.
RSC Adv ; 10(19): 11365-11370, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35495346

RESUMEN

Two isomorphic heterometallic 3d-4f cluster-based materials, formulated [Gd8Cr4(IN)18(µ3-O)2(µ3-OH)6(µ4-O)4(H2O)10]·13H2O (1) and [Tb8Cr4(IN)18(µ3-O)2(µ3-OH)6(µ4-O)4(H2O)10]·13H2O (2) (abbreviation: {Ln8Cr4}: Ln = Gd3+ (1); Tb3+ (2); HIN = isonicotinic acid), were achieved by hydro-/solvothermal method through using the ligand HIN. X-ray diffraction analysis illustrates eight lanthanide ions (Ln = Gd3+, Tb3+) and four transition-metal ions (Cr3+) of {Ln8Cr4} were constructed from two classical "drum-like" {Ln4Cr2} structures associated by organic ligands HIN, displaying a one-dimensional wave chain structure, which is rare. The magnetic properties of {Gd8Cr4} were inspected and showed the existence of antiferromagnetic coupling interactions between contiguous metal ions. On top of this, the magnetic entropy change of ΔS m can attain 23.40 J kg-1 K-1 (44.90 mJ cm-3 K-1) at about 3 K and ΔH = 7 T. Besides, fluorescence measurements of {Tb8Cr4} display typical characteristic Tb-based luminescence.

3.
ACS Appl Mater Interfaces ; 12(51): 57174-57181, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33300787

RESUMEN

The maximum exposure of polyoxometalates (POMs) is of great significance to enhance the catalytic performance of HKUST-1 with incorporated Keggin-type POMs. Herein, two phosphovanadomolybdates were encapsulated into the HKUST-1 via a hydrothermal method to obtain two polyoxometalate-based metal-organic frameworks, formulated as [Cu12(BTC)8(H2O)12][H4PMo11VO40]@(H2O)30 (1) and [Cu12(BTC)8(H2O)12][H5PMo10V2O40]@(H2O)49 (2). Single-crystal X-ray diffraction analysis indicates that two compounds contain unique high-nuclearity water clusters without organic counter cations. The octahedral-shaped water cluster (H2O)30 was constructed from square-pyramid-shaped (H2O)5 for compound 1, while the huge cage-shaped water cluster (H2O)49 of compound 2 consisted of crown-like (H2O)8 and one water molecule, which substitute the organic counter cations involved in the structural construction. More importantly, after removing the water clusters via simple heat treatment, the active sites of the two compounds were fully exposed, leading to good catalytic activities for both benzene hydroxylation reaction and oxidative desulfurization. Furthermore, the catalytic test confirmed that compound 2 may be a bifunctional heterogeneous catalyst with great promise for both benzene hydroxylation and oxidative desulfurization.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda