RESUMEN
The development of Alzheimer's disease (AD) involves central and peripheral immune deregulation. Gene identification and studies of AD genetic variants of peripheral immune components may aid understanding of peripheral-central immune crosstalk and facilitate new opportunities for therapeutic intervention. In this study, we have identified in a Flanders-Belgian family a novel variant p.E317D in the Toll-like receptor 9 gene (TLR9), co-segregating with EOAD in an autosomal dominant manner. In human, TLR9 is an essential innate and adaptive immune component predominantly expressed in peripheral immune cells. The p.E317D variant caused 50% reduction in TLR9 activation in the NF-κB luciferase assay suggesting that p.E317D is a loss-of-function mutation. Cytokine profiling of human PBMCs upon TLR9 activation revealed a predominantly anti-inflammatory response in contrast to the inflammatory responses from TLR7/8 activation. The cytokines released upon TLR9 activation suppressed inflammation and promoted phagocytosis of Aß42 oligomers in human iPSC-derived microglia. Transcriptome analysis identified upregulation of AXL, RUBICON and associated signaling pathways, which may underline the effects of TLR9 signaling-induced cytokines in regulating the inflammatory status and phagocytic property of microglia. Our data suggest a protective role of TLR9 signaling in AD pathogenesis, and we propose that TLR9 loss-of-function may disrupt a peripheral-central immune crosstalk that promotes dampening of inflammation and clearance of toxic protein species, leading to the build-up of neuroinflammation and pathogenic protein aggregates in AD development.
RESUMEN
Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4 Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frameshift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel Kv4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or Kv4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate.
Asunto(s)
Inversión Cromosómica , Demencia/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/deficiencia , Mutación , Proteínas del Tejido Nervioso/deficiencia , Enfermedades Neurodegenerativas/genética , Neuronas/fisiología , Canales de Potasio/deficiencia , Potenciales de Acción/fisiología , Adulto , Anciano , Cromosomas Humanos Par 7/genética , Demencia/fisiopatología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/fisiología , Femenino , Genes Dominantes , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Linaje , Penetrancia , Polimorfismo de Nucleótido Simple , Canales de Potasio/genética , Canales de Potasio/fisiología , Estabilidad Proteica , Transporte de Proteínas , Transmisión Sináptica , Secuenciación Completa del GenomaRESUMEN
Early-onset Alzheimer's disease (EOAD) is generally known as a dominant disease due to highly penetrant pathogenic mutations in the amyloid precursor protein, presenilin 1 and 2. However, they explain only a fraction of EOAD patients (5% to 10%). Furthermore, only 10% to 15% of EOAD families present with clear autosomal dominant inheritance. Studies showed that only 35% to 60% of EOAD patients have at least one affected first-degree relative. Parent-offspring concordance in EOAD was estimated to be <10%, indicating that full penetrant dominant alleles are not the sole players in EOAD. We aim to summarize current knowledge of rare variants underlying familial and seemingly sporadic Alzheimer's disease (AD) patients. Genetic findings indicate that in addition to the amyloid beta pathway, other pathways are of importance in AD pathophysiology. We discuss the difficulties in interpreting the influence of rare variants on disease onset and we underline the value of carefully selected ethnicity-matched cohorts in AD genetic research.
RESUMEN
Matrix metalloproteinases (MMPs) are a multigene family of proteinases regulating the functions of a large number of signaling and scaffolding molecules that are involved in neuro-inflammation, synaptic dysfunction and neuronal death. MMPs have been associated with neurological conditions, such as Alzheimer's disease (AD), through a sudden and massive upregulation of particular members of the MMP family. Evidence for this hypothesis can be found in the clinical observation of increased MMP1 and MMP3 expression levels in plasma of AD patients compared to control individuals and in the pro-amyloidogenic effects that have been described for additional MMP family members like MMP13, MT1-MMP, and MT5-MMP. Consequently, we investigated the role of MMP1, 3, 13, MT1-MMP, and MT5-MMP in the genetic etiology of AD. We performed full exonic resequencing of these 5 MMPs in 1278 AD patients (mean age at onset [AAO]: 74.88 ± 9.10, range: 29-96) and 797 age-matched control individuals (mean age at inclusion [AAI]: 74.92 ± 6.48, range: 65-100) from Flanders-Belgium and identified MMP13 as most promising candidate gene. We identified 6 ultra-rare (≤0.01%) MMP13 missense mutations in 6 patients that were absent from the control cohort. We observed in one control individual a frameshift mutation (p.G269Qfs*2) leading to a premature termination codon. Based on previously described functional evidence, suggesting that MMP13 regulates BACE1 processing, and our genetic findings, we hypothesize a gain-of-function disease mechanism for the missense mutations found in patients. Functional experimental studies remain essential to assess the effect of these mutations on disease related processes and genetic replication studies are needed to corroborate our findings.
Asunto(s)
Enfermedad de Alzheimer/genética , Metaloproteinasa 13 de la Matriz/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Metaloproteinasa 13 de la Matriz/genética , Persona de Mediana Edad , Mutación MissenseRESUMEN
Alzheimer's disease is the most frequent diagnosis of neurodegenerative dementia with early (≤65 years) and late (>65 years) onset ages in familial and sporadic patients. Causal mutations in 3 autosomal dominant Alzheimer genes, i.e. amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2), explain only 5%-10% of early-onset patients leaving the majority of patients genetically unresolved. To discover potential missing genetics, we used whole genome sequencing data of 17 early-onset patients with well-documented clinical diagnosis of Alzheimer's disease. In the discovery group, the mean onset age was 55.71 ± 6.83 years (range 37-65). Six patients had a brain autopsy and neuropathology confirmed Alzheimer's disease. Analysis of the genetic data identified in one patient a homozygous p.V366M missense mutation in the Von Willebrand factor A domain containing 2 gene (VWA2). Resequencing of the VWA2 coding region in an Alzheimer's disease patient cohort from Flanders-Belgium (n = 1148), including 152 early and 996 late onset patients, identified additional homozygous and compound heterozygous missense mutations in 1 early and 3 late-onset patients. Allele-sharing analysis identified common haplotypes among the compound heterozygous VWA2 mutation carriers, suggesting shared ancestors. Overall, we identified 5 patient carriers of homozygous or compound heterozygous missense mutations (5/1165; 0.43 %), 2 in early (2/169; 1.18 %) and 3 in late-onset (3/996; 0.30 %) patients. The frequencies of the homozygous and compound heterozygous missense mutations in patients are higher than expected from the frequencies calculated based on their combined single alleles. None of the homozygous/compound heterozygous missense mutation carriers had a family history of autosomal dominant Alzheimer's disease. Our findings suggest that homozygous and compound heterozygous missense mutations in VWA2 might contribute to the risk of Alzheimer's disease in sporadic patients.