Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Bioresour Technol ; 359: 127500, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35724913

RESUMEN

The aim of this work was to study on MgO-modified KOH activated biochar (AC) catalysts, in the pyrolysis of sawdust for the direct production of bio-jet fuels using a tandem micro-pyrolyzer. AC catalysts with various MgO contents (5 to 20 wt%) were synthesized using an impregnation method. The mesopores generated (4 to 18 nm) in the carbon has a great potential in the conversion of oxygenated to jet fuel. The importance of basic nature in the catalysts is demonstrated with the maximum bio-jet fuel yield of 29 % at 10 % MgO. Further, the temperature of 600 °C and a catalyst/sawdust ratio of 10 are identified as the optimal conditions. The nanosize of MgO and the synergism of acid and base sites seemed to enhance deoxygenation, via decarboxylation and decarbonylation, and oligomerization, which are required for jet fuel formation in high amounts from sawdust pyrolysis.


Asunto(s)
Óxido de Magnesio , Pirólisis , Biocombustibles , Carbón Orgánico , Calor
2.
Bioresour Technol ; 353: 127131, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35398535

RESUMEN

Catalytic fast pyrolysis of low sulfonated Kraft lignin was performed under different atmospheric environments such as N2, CH4, and the gas derived from CH4 decomposition (CH4-D). The use of Zn- or Mo-loaded HZSM-5 as catalyst led to a higher pyrolytic oil yield compared to parent HZSM-5 in CH4 and CH4-D atmospheres. The yields of benzene, toluene, and xylenes were increased by the synergistic effects from metal loading, higher H/Ceff ratio, higher acidity, and CH4 activation. The enhanced CH4 activation via metal loading resulted in higher methylation of alkyl moieties and 33% increase in the total yield of benzene, toluene, and xylenes in comparison to parent HZSM-5. A higher H/Ceff ratio of 6 via CH4 decomposition led to the formation of a hydro-pyrolysis environment. Moreover, the CH4-D environment showed H2/CH4 ratio of 0.36 in the product gas which warranted the presence of more H2 under the CH4-D pyrolysis environment.


Asunto(s)
Metano , Pirólisis , Benceno , Catálisis , Medios de Cultivo , Calor , Lignina , Metales , Tolueno , Xilenos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda