Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cereb Cortex ; 33(7): 3437-3453, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35965059

RESUMEN

Functional imaging studies of neurotypical adults report activation in the left putamen during speech production. The current study asked how stroke survivors with left putamen damage are able to produce correct spoken responses during a range of speech production tasks. Using functional magnetic resonance imaging, activation during correct speech production responses was assessed in 5 stroke patients with circumscribed left dorsal striatal lesions, 66 stroke patient controls who did not have focal left dorsal striatal lesions, and 54 neurotypical adults. As a group, patients with left dorsal striatal damage (our patients of interest) showed higher activation than neurotypical controls in the left superior parietal cortex during successful speech production. This effect was not specific to patients with left dorsal striatal lesions as we observed enhanced activation in the same region in some patient controls and also in more error-prone neurotypical participants. Our results strongly suggest that enhanced left superior parietal activation supports speech production in diverse challenging circumstances, including those caused by stroke damage. They add to a growing body of literature indicating how upregulation within undamaged parts of the neural systems already recruited by neurotypical adults contributes to recovery after stroke.


Asunto(s)
Habla , Accidente Cerebrovascular , Adulto , Humanos , Habla/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Imagen por Resonancia Magnética , Lóbulo Parietal , Putamen
2.
Brain ; 144(3): 817-832, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33517378

RESUMEN

Broca's area in the posterior half of the left inferior frontal gyrus has long been thought to be critical for speech production. The current view is that long-term speech production outcome in patients with Broca's area damage is best explained by the combination of damage to Broca's area and neighbouring regions including the underlying white matter, which was also damaged in Paul Broca's two historic cases. Here, we dissociate the effect of damage to Broca's area from the effect of damage to surrounding areas by studying long-term speech production outcome in 134 stroke survivors with relatively circumscribed left frontal lobe lesions that spared posterior speech production areas in lateral inferior parietal and superior temporal association cortices. Collectively, these patients had varying degrees of damage to one or more of nine atlas-based grey or white matter regions: Brodmann areas 44 and 45 (together known as Broca's area), ventral premotor cortex, primary motor cortex, insula, putamen, the anterior segment of the arcuate fasciculus, uncinate fasciculus and frontal aslant tract. Spoken picture description scores from the Comprehensive Aphasia Test were used as the outcome measure. Multiple regression analyses allowed us to tease apart the contribution of other variables influencing speech production abilities such as total lesion volume and time post-stroke. We found that, in our sample of patients with left frontal damage, long-term speech production impairments (lasting beyond 3 months post-stroke) were solely predicted by the degree of damage to white matter, directly above the insula, in the vicinity of the anterior part of the arcuate fasciculus, with no contribution from the degree of damage to Broca's area (as confirmed with Bayesian statistics). The effect of white matter damage cannot be explained by a disconnection of Broca's area, because speech production scores were worse after damage to the anterior arcuate fasciculus with relative sparing of Broca's area than after damage to Broca's area with relative sparing of the anterior arcuate fasciculus. Our findings provide evidence for three novel conclusions: (i) Broca's area damage does not contribute to long-term speech production outcome after left frontal lobe strokes; (ii) persistent speech production impairments after damage to the anterior arcuate fasciculus cannot be explained by a disconnection of Broca's area; and (iii) the prior association between persistent speech production impairments and Broca's area damage can be explained by co-occurring white matter damage, above the insula, in the vicinity of the anterior part of the arcuate fasciculus.


Asunto(s)
Afasia de Broca/patología , Área de Broca/patología , Lóbulo Frontal/patología , Accidente Cerebrovascular/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/complicaciones
3.
Neuropsychol Rehabil ; 32(9): 2319-2341, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34210238

RESUMEN

Establishing whether speech and language therapy after stroke has beneficial effects on speaking ability is challenging because of the need to control for multiple non-therapy factors known to influence recovery. We investigated how speaking ability at three time points post-stroke differed in patients who received varying amounts of clinical therapy in the first month post-stroke. In contrast to prior studies, we factored out variance from: initial severity of speaking impairment, amount of later therapy, and left and right hemisphere lesion size and site. We found that speaking ability at one month post-stroke was significantly better in patients who received early therapy (n = 79), versus those who did not (n = 64), and the number of hours of early therapy was positively related to recovery at one year post-stroke. We offer two non-mutually exclusive interpretations of these data: (1) patients may benefit from the early provision of self-management strategies; (2) therapy is more likely to be provided to patients who have a better chance of recovery (e.g., poor physical and/or mental health may impact suitability for therapy and chance of recovery). Both interpretations have implications for future studies aiming to predict individual patients' speech outcomes after stroke, and their response to therapy.


Asunto(s)
Afasia , Accidente Cerebrovascular , Humanos , Afasia/etiología , Terapia del Lenguaje , Habla , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Logopedia , Sobrevivientes
4.
Neuroimage ; 245: 118734, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34793955

RESUMEN

Controversy surrounds the interpretation of higher activation for pseudoword compared to word reading in the left precentral gyrus and pars opercularis. Specifically, does activation in these regions reflect: (1) the demands on sublexical assembly of articulatory codes, or (2) retrieval effort because the combinations of articulatory codes are unfamiliar? Using fMRI, in 84 neurologically intact participants, we addressed this issue by comparing reading and repetition of words (W) and pseudowords (P) to naming objects (O) from pictures or sounds. As objects do not provide sublexical articulatory cues, we hypothesis that retrieval effort will be greater for object naming than word repetition/reading (which benefits from both lexical and sublexical cues); while the demands on sublexical assembly will be higher for pseudoword production than object naming. We found that activation was: (i) highest for pseudoword reading [P>O&W in the visual modality] in the anterior part of the ventral precentral gyrus bordering the precentral sulcus (vPCg/vPCs), consistent with the sublexical assembly of articulatory codes; but (ii) as high for object naming as pseudoword production [P&O>W] in dorsal precentral gyrus (dPCg) and the left inferior frontal junction (IFJ), consistent with retrieval demands and cognitive control. In addition, we dissociate the response properties of vPCg/vPCs, dPCg and IFJ from other left frontal lobe regions that are activated during single word speech production. Specifically, in both auditory and visual modalities: a central part of vPCg (head and face area) was more activated for verbal than nonverbal stimuli [P&W>O]; and the pars orbitalis and inferior frontal sulcus were most activated during object naming [O>W&P]. Our findings help to resolve a previous discrepancy in the literature, dissociate three functionally distinct parts of the precentral gyrus, and refine our knowledge of the functional anatomy of speech production in the left frontal lobe.


Asunto(s)
Mapeo Encefálico/métodos , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiología , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos/fisiología , Medición de la Producción del Habla , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lectura
5.
Neuroimage ; 245: 118764, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34848301

RESUMEN

Prior studies have shown that the left posterior superior temporal sulcus (pSTS) and left temporo-parietal junction (TPJ) both contribute to phonological short-term memory, speech perception and speech production. Here, by conducting a within-subjects multi-factorial fMRI study, we dissociate the response profiles of these regions and a third region - the anterior ascending terminal branch of the left superior temporal sulcus (atSTS), which lies dorsal to pSTS and ventral to TPJ. First, we show that each region was more activated by (i) 1-back matching on visually presented verbal stimuli (words or pseudowords) compared to 1-back matching on visually presented non-verbal stimuli (pictures of objects or non-objects), and (ii) overt speech production than 1-back matching, across 8 types of stimuli (visually presented words, pseudowords, objects and non-objects and aurally presented words, pseudowords, object sounds and meaningless hums). The response properties of the three regions dissociated within the auditory modality. In left TPJ, activation was higher for auditory stimuli that were non-verbal (sounds of objects or meaningless hums) compared to verbal (words and pseudowords), irrespective of task (speech production or 1-back matching). In left pSTS, activation was higher for non-semantic stimuli (pseudowords and hums) than semantic stimuli (words and object sounds) on the dorsal pSTS surface (dpSTS), irrespective of task. In left atSTS, activation was not sensitive to either semantic or verbal content. The contrasting response properties of left TPJ, dpSTS and atSTS was cross-validated in an independent sample of 59 participants, using region-by-condition interactions. We also show that each region participates in non-overlapping networks of frontal, parietal and cerebellar regions. Our results challenge previous claims about functional specialisation in the left posterior superior temporal lobe and motivate future studies to determine the timing and directionality of information flow in the brain networks involved in speech perception and production.


Asunto(s)
Mapeo Encefálico , Cerebelo/fisiología , Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Psicolingüística , Percepción del Habla/fisiología , Habla/fisiología , Lóbulo Temporal/fisiología , Adulto , Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Lectura , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
7.
Brain ; 142(1): 15-22, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30535098

RESUMEN

The proportional recovery rule asserts that most stroke survivors recover a fixed proportion of lost function. To the extent that this is true, recovery from stroke can be predicted accurately from baseline measures of acute post-stroke impairment alone. Reports that baseline scores explain more than 80%, and sometimes more than 90%, of the variance in the patients' recoveries, are rapidly accumulating. Here, we show that these headline effect sizes are likely inflated. The key effects in this literature are typically expressed as, or reducible to, correlation coefficients between baseline scores and recovery (outcome scores minus baseline scores). Using formal analyses and simulations, we show that these correlations will be extreme when outcomes are significantly less variable than baselines, which they often will be in practice regardless of the real relationship between outcomes and baselines. We show that these effect sizes are likely to be over-optimistic in every empirical study that we found that reported enough information for us to make the judgement, and argue that the same is likely to be true in other studies as well. The implication is that recovery after stroke may not be as proportional as recent studies suggest.


Asunto(s)
Recuperación de la Función , Estadística como Asunto/métodos , Accidente Cerebrovascular , Humanos
9.
Neuroimage ; 203: 116184, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31520744

RESUMEN

This fMRI study of 24 healthy human participants investigated whether any part of the auditory cortex was more responsive to self-generated speech sounds compared to hearing another person speak. The results demonstrate a double dissociation in two different parts of the auditory cortex. In the right posterior superior temporal sulcus (RpSTS), activation was higher during speech production than listening to auditory stimuli, whereas in bilateral superior temporal gyri (STG), activation was higher for listening to auditory stimuli than during speech production. In the second part of the study, we investigated the function of the identified regions, by examining how activation changed across a range of listening and speech production tasks that systematically varied the demands on acoustic, semantic, phonological and orthographic processing. In RpSTS, activation during auditory conditions was higher in the absence of semantic cues, plausibly indicating increased attention to the spectral-temporal features of auditory inputs. In addition, RpSTS responded in the absence of any auditory inputs when participants were making one-back matching decisions on visually presented pseudowords. After analysing the influence of visual, phonological, semantic and orthographic processing, we propose that RpSTS (i) contributes to short term memory of speech sounds as well as (ii) spectral-temporal processing of auditory input and (iii) may play a role in integrating auditory expectations with auditory input. In contrast, activation in bilateral STG was sensitive to acoustic input and did not respond in the absence of auditory input. The special role of RpSTS during speech production therefore merits further investigation if we are to fully understand the neural mechanisms supporting speech production during speech acquisition, adult life, hearing loss and after brain injury.


Asunto(s)
Corteza Auditiva/fisiología , Percepción del Habla/fisiología , Habla/fisiología , Lóbulo Temporal/fisiología , Estimulación Acústica , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Percepción Visual/fisiología , Adulto Joven
10.
Brain ; 141(12): 3389-3404, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30418586

RESUMEN

Acquired language disorders after stroke are strongly associated with left hemisphere damage. When language difficulties are observed in the context of right hemisphere strokes, patients are usually considered to have atypical functional anatomy. By systematically integrating behavioural and lesion data from brain damaged patients with functional MRI data from neurologically normal participants, we investigated when and why right hemisphere strokes cause language disorders. Experiment 1 studied right-handed patients with unilateral strokes that damaged the right (n = 109) or left (n = 369) hemispheres. The most frequently impaired language task was: auditory sentence-to-picture matching after right hemisphere strokes; and spoken picture description after left hemisphere strokes. For those with auditory sentence-to-picture matching impairments after right hemisphere strokes, the majority (n = 9) had normal performance on tests of perceptual (visual or auditory) and linguistic (semantic, phonological or syntactic) processing. Experiment 2 found that these nine patients had significantly more damage to dorsal parts of the superior longitudinal fasciculus and the right inferior frontal sulcus compared to 75 other patients who also had right hemisphere strokes but were not impaired on the auditory sentence-to-picture matching task. Damage to these right hemisphere regions caused long-term speech comprehension difficulties in 67% of patients. Experiments 3 and 4 used functional MRI in two groups of 25 neurologically normal individuals to show that within the regions identified by Experiment 2, the right inferior frontal sulcus was normally activated by (i) auditory sentence-to-picture matching; and (ii) one-back matching when the demands on linguistic and non-linguistic working memory were high. Together, these experiments demonstrate that the right inferior frontal cortex contributes to linguistic and non-linguistic working memory capacity (executive function) that is needed for normal speech comprehension. Our results link previously unrelated literatures on the role of the right inferior frontal cortex in executive processing and the role of executive processing in sentence comprehension; which in turn helps to explain why right inferior frontal activity has previously been reported to increase during recovery of language function after left hemisphere stroke. The clinical relevance of our findings is that the detrimental effect of right hemisphere strokes on language is (i) much greater than expected; (ii) frequently observed after damage to the right inferior frontal sulcus; (iii) task dependent; (iv) different to the type of impairments observed after left hemisphere strokes; and (v) can result in long-lasting deficits that are (vi) not the consequence of atypical language lateralization.


Asunto(s)
Comprensión , Lóbulo Frontal/patología , Trastornos del Lenguaje/patología , Trastornos del Lenguaje/psicología , Percepción del Habla , Accidente Cerebrovascular/complicaciones , Femenino , Lateralidad Funcional , Humanos , Trastornos del Lenguaje/etiología , Lingüística , Masculino , Memoria a Corto Plazo , Persona de Mediana Edad
11.
Brain ; 140(6): 1718-1728, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444235

RESUMEN

Stroke survivors with acquired language deficits are commonly thought to reach a 'plateau' within a year of stroke onset, after which their residual language skills will remain stable. Nevertheless, there have been reports of patients who appear to recover over years. Here, we analysed longitudinal change in 28 left-hemisphere stroke patients, each more than a year post-stroke when first assessed-testing each patient's spoken object naming skills and acquiring structural brain scans twice. Some of the patients appeared to improve over time while others declined; both directions of change were associated with, and predictable given, structural adaptation in the intact right hemisphere of the brain. Contrary to the prevailing view that these patients' language skills are stable, these results imply that real change continues over years. The strongest brain-behaviour associations (the 'peak clusters') were in the anterior temporal lobe and the precentral gyrus. Using functional magnetic resonance imaging, we confirmed that both regions are actively involved when neurologically normal control subjects name visually presented objects, but neither appeared to be involved when the same participants used a finger press to make semantic association decisions on the same stimuli. This suggests that these regions serve word-retrieval or articulatory functions in the undamaged brain. We teased these interpretations apart by reference to change in other tasks. Consistent with the claim that the real change is occurring here, change in spoken object naming was correlated with change in two other similar tasks, spoken action naming and written object naming, each of which was independently associated with structural adaptation in similar (overlapping) right hemisphere regions. Change in written object naming, which requires word-retrieval but not articulation, was also significantly more correlated with both (i) change in spoken object naming; and (ii) structural adaptation in the two peak clusters, than was change in another task-auditory word repetition-which requires articulation but not word retrieval. This suggests that the changes in spoken object naming reflected variation at the level of word-retrieval processes. Surprisingly, given their qualitatively similar activation profiles, hypertrophy in the anterior temporal region was associated with improving behaviour, while hypertrophy in the precentral gyrus was associated with declining behaviour. We predict that either or both of these regions might be fruitful targets for neural stimulation studies (suppressing the precentral region and/or enhancing the anterior temporal region), aiming to encourage recovery or arrest decline even years after stroke occurs.


Asunto(s)
Adaptación Fisiológica/fisiología , Afasia/fisiopatología , Corteza Cerebral/fisiopatología , Lateralidad Funcional/fisiología , Neuroimagen Funcional/métodos , Evaluación de Resultado en la Atención de Salud , Accidente Cerebrovascular/fisiopatología , Adulto , Anciano , Afasia/diagnóstico por imagen , Afasia/etiología , Afasia/rehabilitación , Corteza Cerebral/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Humanos , Terapia del Lenguaje , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen
12.
Brain ; 140(6): 1729-1742, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28430974

RESUMEN

Transcranial magnetic stimulation focused on either the left anterior supramarginal gyrus or opercular part of the left inferior frontal gyrus has been reported to transiently impair the ability to perform phonological more than semantic tasks. Here we tested whether phonological processing abilities were also impaired following lesions to these regions in right-handed, English speaking adults, who were investigated at least 1 year after a left-hemisphere stroke. When our regions of interest were limited to 0.5 cm3 of grey matter centred around sites that had been identified with transcranial magnetic stimulation-based functional localization, phonological impairments were observed in 74% (40/54) of patients with damage to the regions and 21% (21/100) of patients sparing these regions. This classification accuracy was better than that observed when using regions of interest centred on activation sites in previous functional magnetic resonance imaging studies of phonological processing, or transcranial magnetic stimulation sites that did not use functional localization. New regions of interest were generated by redefining the borders of each of the transcranial magnetic stimulation sites to include areas that were consistently damaged in the patients with phonological impairments. This increased the incidence of phonological impairments in the presence of damage to 85% (46/54) and also reduced the incidence of phonological impairments in the absence of damage to 15% (15/100). The difference in phonological processing abilities between those with and without damage to these 'transcranial magnetic stimulation-guided' regions remained highly significant even after controlling for the effect of lesion size. The classification accuracy of the transcranial magnetic stimulation-guided regions was validated in a second sample of 108 patients and found to be better than that for (i) functional magnetic resonance imaging-guided regions; (ii) a region identified from an unguided lesion overlap map; and (iii) a region identified from voxel-based lesion-symptom mapping. Finally, consistent with prior findings from functional imaging and transcranial magnetic stimulation in healthy participants, we show how damage to our transcranial magnetic stimulation-guided regions affected performance on phonologically more than semantically demanding tasks. The observation that phonological processing abilities were impaired years after the stroke, suggests that other brain regions were not able to fully compensate for the contribution that the transcranial magnetic stimulation-guided regions make to language tasks. More generally, our novel transcranial magnetic stimulation-guided lesion-deficit mapping approach shows how non-invasive stimulation of the healthy brain can be used to guide the identification of regions where brain damage is likely to cause persistent behavioural effects.


Asunto(s)
Mapeo Encefálico/métodos , Trastornos del Lenguaje/fisiopatología , Imagen por Resonancia Magnética/métodos , Evaluación de Resultado en la Atención de Salud , Accidente Cerebrovascular/fisiopatología , Estimulación Magnética Transcraneal/métodos , Adulto , Anciano , Anciano de 80 o más Años , Afasia/diagnóstico por imagen , Afasia/etiología , Afasia/fisiopatología , Femenino , Estudios de Seguimiento , Voluntarios Sanos , Humanos , Trastornos del Lenguaje/diagnóstico por imagen , Trastornos del Lenguaje/etiología , Masculino , Persona de Mediana Edad , Pronóstico , Semántica , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Adulto Joven
13.
Neuroimage ; 161: 94-103, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28822751

RESUMEN

Past attempts to identify the neural substrates of hand and finger imitation skills in the left hemisphere of the brain have yielded inconsistent results. Here, we analyse those associations in a large sample of 257 left hemisphere stroke patients. By introducing novel Bayesian methods, we characterise lesion symptom associations at three levels: the voxel-level, the single-region level (using anatomically defined regions), and the region-pair level. The results are inconsistent across those three levels and we argue that each level of analysis makes assumptions which constrain the results it can produce. Regardless of the inconsistencies across levels, and contrary to past studies which implicated differential neural substrates for hand and finger imitation, we find no consistent voxels or regions, where damage affects one imitation skill and not the other, at any of the three analysis levels. Our novel Bayesian approach indicates that any apparent differences appear to be driven by an increased sensitivity of hand imitation skills to lesions that also impair finger imitation. In our analyses, the results of the highest level of analysis (region-pairs) emphasise a role of the primary somatosensory and motor cortices, and the occipital lobe in imitation. We argue that this emphasis supports an account of both imitation tasks based on direct sensor-motor connections, which throws doubt on past accounts which imply the need for an intermediate (e.g. body-part-coding) system of representation.


Asunto(s)
Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Gestos , Mano/fisiopatología , Conducta Imitativa/fisiología , Modelos Teóricos , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Adulto , Anciano , Teorema de Bayes , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/diagnóstico por imagen
14.
J Neurosci ; 35(11): 4751-9, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25788691

RESUMEN

The parietal operculum, particularly the cytoarchitectonic area OP1 of the secondary somatosensory area (SII), is involved in somatosensory feedback. Using fMRI with 58 human subjects, we investigated task-dependent differences in SII/OP1 activity during three familiar speech production tasks: object naming, reading and repeatedly saying "1-2-3." Bilateral SII/OP1 was significantly suppressed (relative to rest) during object naming, to a lesser extent when repeatedly saying "1-2-3" and not at all during reading. These results cannot be explained by task difficulty but the contrasting difference between naming and reading illustrates how the demands on somatosensory activity change with task, even when motor output (i.e., production of object names) is matched. To investigate what determined SII/OP1 deactivation during object naming, we searched the whole brain for areas where activity increased as that in SII/OP1 decreased. This across subject covariance analysis revealed a region in the right superior temporal sulcus (STS) that lies within the auditory cortex, and is activated by auditory feedback during speech production. The tradeoff between activity in SII/OP1 and STS was not observed during reading, which showed significantly more activation than naming in both SII/OP1 and STS bilaterally. These findings suggest that, although object naming is more error prone than reading, subjects can afford to rely more or less on somatosensory or auditory feedback during naming. In contrast, fast and efficient error-free reading places more consistent demands on both types of feedback, perhaps because of the potential for increased competition between lexical and sublexical codes at the articulatory level.


Asunto(s)
Corteza Auditiva/fisiología , Mapeo Encefálico/métodos , Estimulación Luminosa/métodos , Lectura , Corteza Somatosensorial/fisiología , Habla/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Neuroimage ; 125: 1169-1173, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26388553

RESUMEN

Brain imaging studies of functional outcomes after white matter damage have quantified the severity of white matter damage in different ways. Here we compared how the outcome of such studies depends on two different types of measurements: the proportion of the target tract that has been destroyed ('lesion load') and tract disconnection. We demonstrate that conclusions from analyses based on two examples of these measures diverge and that conclusions based solely on lesion load may be misleading. First, we reproduce a recent lesion-load-only analysis which suggests that damage to the arcuate fasciculus, and not to the uncinate fasciculus, is significantly associated with deficits in fluency and naming skills. Next, we repeat the analysis after replacing the measures of lesion load with measures of tract disconnection for both tracts, and observe significant associations between both tracts and both language skills: i.e. the change increases the apparent relevance of the uncinate fasciculus to fluency and naming skills. Finally we show that, in this dataset, disconnection data explains significant variance in both language skills that is not accounted for by lesion load or volume, but lesion load data explains no unique variance in those skills, once disconnection and lesion volume are taken into account.


Asunto(s)
Encéfalo/patología , Modelos Neurológicos , Vías Nerviosas/patología , Accidente Cerebrovascular/patología , Sustancia Blanca/patología , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Accidente Cerebrovascular/complicaciones
16.
Neuroimage ; 124(Pt B): 1208-1212, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25882753

RESUMEN

The PLORAS Database is a relational repository of anatomical and functional imaging data that has primarily been acquired from stroke survivors, along with standardized scores on a wide range of sensory, motor and cognitive abilities, demographic details and medical history. As of January 2015, we have data from 750 patients with an expected accrual rate of 200 patients per year. Expansion will accelerate as we extend our collaborations. The main aim of the database is to Predict Language Outcome and Recovery After Stroke (PLORAS) on the basis of a single structural (anatomical) brain scan that indexes the stereotactic location and extent of brain damage. Predictions are made for individual patients by indicating how other patients with the most similar brain damage, cognitive abilities and demographic details recovered their language skills over time. Predictions are validated by longitudinal follow-ups of patients who initially presented with speech and language difficulties. The PLORAS Database can also be used to predict recovery of other cognitive abilities on the basis of anatomical brain scans. The functional imaging data can be used to understand the neural mechanisms that support recovery from brain damage; and all the data can be used to understand the main sources of inter-subject variability in structure-function mappings in the human brain. Data will be made available for sharing, subject to: funding, ethical approval and patient consent.


Asunto(s)
Bases de Datos Factuales , Trastornos del Lenguaje/rehabilitación , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/psicología , Resultado del Tratamiento , Encéfalo/patología , Cognición , Humanos , Procesamiento de Imagen Asistido por Computador , Trastornos del Lenguaje/etiología , Imagen por Resonancia Magnética , Pronóstico , Control de Calidad , Recuperación de la Función , Trastornos del Habla/etiología , Trastornos del Habla/rehabilitación , Accidente Cerebrovascular/patología
17.
Brain ; 143(8): 2336-2338, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32844191
18.
Brain ; 138(Pt 4): 1070-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25688076

RESUMEN

Post-stroke prognoses are usually inductive, generalizing trends learned from one group of patients, whose outcomes are known, to make predictions for new patients. Research into the recovery of language function is almost exclusively focused on monolingual stroke patients, but bilingualism is the norm in many parts of the world. If bilingual language recruits qualitatively different networks in the brain, prognostic models developed for monolinguals might not generalize well to bilingual stroke patients. Here, we sought to establish how applicable post-stroke prognostic models, trained with monolingual patient data, are to bilingual stroke patients who had been ordinarily resident in the UK for many years. We used an algorithm to extract binary lesion images for each stroke patient, and assessed their language with a standard tool. We used feature selection and cross-validation to find 'good' prognostic models for each of 22 different language skills, using monolingual data only (174 patients; 112 males and 62 females; age at stroke: mean = 53.0 years, standard deviation = 12.2 years, range = 17.2-80.1 years; time post-stroke: mean = 55.6 months, standard deviation = 62.6 months, range = 3.1-431.9 months), then made predictions for both monolinguals and bilinguals (33 patients; 18 males and 15 females; age at stroke: mean = 49.0 years, standard deviation = 13.2 years, range = 23.1-77.0 years; time post-stroke: mean = 49.2 months, standard deviation = 55.8 months, range = 3.9-219.9 months) separately, after training with monolingual data only. We measured group differences by comparing prediction error distributions, and used a Bayesian test to search for group differences in terms of lesion-deficit associations in the brain. Our models distinguish better outcomes from worse outcomes equally well within each group, but tended to be over-optimistic when predicting bilingual language outcomes: our bilingual patients tended to have poorer language skills than expected, based on trends learned from monolingual data alone, and this was significant (P < 0.05, corrected for multiple comparisons) in 13/22 language tasks. Both patient groups appeared to be sensitive to damage in the same sets of regions, though the bilinguals were more sensitive than the monolinguals. media-1vid1 10.1093/brain/awv020_video_abstract awv020_video_abstract.


Asunto(s)
Bases de Datos Factuales , Pruebas del Lenguaje , Lenguaje , Multilingüismo , Accidente Cerebrovascular/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/epidemiología , Resultado del Tratamiento , Adulto Joven
19.
Neuroimage Clin ; 43: 103638, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39002223

RESUMEN

Machine learning offers great potential for automated prediction of post-stroke symptoms and their response to rehabilitation. Major challenges for this endeavour include the very high dimensionality of neuroimaging data, the relatively small size of the datasets available for learning and interpreting the predictive features, as well as, how to effectively combine neuroimaging and tabular data (e.g. demographic information and clinical characteristics). This paper evaluates several solutions based on two strategies. The first is to use 2D images that summarise MRI scans. The second is to select key features that improve classification accuracy. Additionally, we introduce the novel approach of training a convolutional neural network (CNN) on images that combine regions-of-interests (ROIs) extracted from MRIs, with symbolic representations of tabular data. We evaluate a series of CNN architectures (both 2D and a 3D) that are trained on different representations of MRI and tabular data, to predict whether a composite measure of post-stroke spoken picture description ability is in the aphasic or non-aphasic range. MRI and tabular data were acquired from 758 English speaking stroke survivors who participated in the PLORAS study. Each participant was assigned to one of five different groups that were matched for initial severity of symptoms, recovery time, left lesion size and the months or years post-stroke that spoken description scores were collected. Training and validation were carried out on the first four groups. The fifth (lock-box/test set) group was used to test how well model accuracy generalises to new (unseen) data. The classification accuracy for a baseline logistic regression was 0.678 based on lesion size alone, rising to 0.757 and 0.813 when initial symptom severity and recovery time were successively added. The highest classification accuracy (0.854), area under the curve (0.899) and F1 score (0.901) were observed when 8 regions of interest were extracted from each MRI scan and combined with lesion size, initial severity and recovery time in a 2D Residual Neural Network (ResNet). This was also the best model when data were limited to the 286 participants with moderate or severe initial aphasia (with area under curve = 0.865), a group that would be considered more difficult to classify. Our findings demonstrate how imaging and tabular data can be combined to achieve high post-stroke classification accuracy, even when the dataset is small in machine learning terms. We conclude by proposing how the current models could be improved to achieve even higher levels of accuracy using images from hospital scanners.

20.
Life (Basel) ; 14(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38541656

RESUMEN

Anomia, or difficulty naming common objects, is the most common, acquired impairment of language. Effective therapeutic interventions for anomia typically involve massed practice at high doses. This requires significant investment from patients and therapists. Aphasia researchers have increasingly looked to neurostimulation to accelerate these treatment effects, but the evidence behind this intervention is sparse and inconsistent. Here, we hypothesised that group-level neurostimulation effects might belie a more systematic structure at the individual level. We sought to test the hypothesis by attempting to predict the immediate (online), individual-level behavioural effects of anodal and sham neurostimulation in 36 chronic patients with anomia, performing naming and size judgement tasks. Using clinical, (pre-stimulation) behavioural and MRI data, as well as Partial Least Squares regression, we attempted to predict neurostimulation effects on accuracies and reaction times of both tasks. Model performance was assessed via cross-validation. Predictive performances were compared to that of a null model, which predicted the mean neurostimulation effects for all patients. Models derived from pre-stimulation data consistently outperformed the null model when predicting neurostimulation effects on both tasks' performance. Notably, we could predict behavioural declines just as well as improvements. In conclusion, inter-patient variation in online responses to neurostimulation is, to some extent, systematic and predictable. Since declines in performance were just as predictable as improvements, the behavioural effects of neurostimulation in patients with anomia are unlikely to be driven by placebo effects. However, the online effect of the intervention appears to be as likely to interfere with task performance as to improve it.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda