Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Rinsho Ketsueki ; 58(8): 942-949, 2017.
Artículo en Japonés | MEDLINE | ID: mdl-28883279

RESUMEN

Repeated cell divisions induce DNA damage accumulation, which impairs stem cell function during aging. However, the general molecular mechanisms by which this occurs remain unclear. Herein, we show that the expression of protection of telomeres 1a (Pot1a), a component of shelterin, is crucial for prevention of telomeric DNA damage response (DDR) and maintenance of hematopoietic stem cell (HSC) activity during aging. We observed that HSCs express high levels of Pot1a during development, and this expression declines with aging. Knockdown of Pot1a induced an age-related phenotype, characterized by increased telomeric DDR and reduced long-term reconstitution activity. In contrast, treatment with exogenous Pot1a protein prevented telomeric DDR, which decreased stem cell activity and partially rejuvenated HSC activity. These results highlight a general, reversible mechanism by which aging compromises mammalian stem cell activity, with widespread implications for regenerative medicine.


Asunto(s)
Senescencia Celular , Proteínas de Unión al ADN/genética , Células Madre Hematopoyéticas/metabolismo , Telómero/genética , Envejecimiento , Animales , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Telómero/metabolismo
2.
Stem Cells ; 33(2): 479-90, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25329760

RESUMEN

The transcription factor c-Myb was originally identified as a transforming oncoprotein encoded by two avian leukemia viruses. Subsequently, through the generation of mouse models that affect its expression, c-Myb has been shown to be a key regulator of hematopoiesis, including having critical roles in hematopoietic stem cells (HSCs). The precise function of c-Myb in HSCs although remains unclear. We have generated a novel c-myb allele in mice that allows direct observation of c-Myb protein levels in single cells. Using this reporter line we demonstrate that subtypes of HSCs can be isolated based upon their respective c-Myb protein expression levels. HSCs expressing low levels of c-Myb protein (c-Myb(low) HSC) appear to represent the most immature, dormant HSCs and they are a predominant component of HSCs that retain bromodeoxyuridine labeling. Hematopoietic stress, induced by 5-fluorouracil ablation, revealed that in this circumstance c-Myb-expressing cells become critical for multilineage repopulation. The discrimination of HSC subpopulations based on c-Myb protein levels is not reflected in the levels of c-myb mRNA, there being no more than a 1.3-fold difference comparing c-Myb(low) and c-Myb(high) HSCs. This illustrates how essential it is to include protein studies when aiming to understand the regulatory networks that control stem cell behavior.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas c-myb/biosíntesis , Animales , Genes Reporteros , Ratones , Proteínas Proto-Oncogénicas c-myb/genética
3.
Blood ; 121(11): 1995-2007, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23315170

RESUMEN

Prostaglandin E(2) (PGE(2)) regulates hematopoietic stem/progenitor cell (HSPC) activity. However, the receptor(s) responsible for PGE(2) signaling remains unclear. Here, we identified EP4 as a receptor activated by PGE(2) to regulate HSPCs. Knockdown of Ep4 in HSPCs reduced long-term reconstitution capacity, whereas an EP4-selective agonist induced phosphorylation of GSK3ß and ß-catenin and enhanced long-term reconstitution capacity. Next, we analyzed the niche-mediated effect of PGE(2) in HSPC regulation. Bone marrow mesenchymal progenitor cells (MPCs) expressed EP receptors, and stimulation of MPCs with PGE(2) significantly increased their ability to support HSPC colony formation. Among the EP receptor agonists, only an EP4 agonist facilitated the formation of HSPC colonies after the coculture with MPCs. PGE(2) up-regulated the expression of cytokine-, cell adhesion-, extracellular matrix-, and protease-related genes in MPCs. We also examined the function of PGE(2)/EP4 signaling in the recovery of the HSPCs after myelosuppression. The administration of PGE(2) or an EP4 agonist facilitated the recovery of HSPCs from 5-fluorouracil (5-FU)-induced myelosuppression, indicating a role for PGE(2)/EP4 signaling in this process. Altogether, these data suggest that EP4 is a key receptor for PGE(2)-mediated direct and indirect regulation of HSPCs.


Asunto(s)
Dinoprostona/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Subtipo EP4 de Receptores de Prostaglandina E/fisiología , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Células Cultivadas , Dinoprostona/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/farmacología , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/fisiología , Subtipo EP4 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 34(4): 790-800, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24526691

RESUMEN

OBJECTIVE: Cardiovascular disease (CVD), the most common morbidity resulting from atherosclerosis, remains a frequent cause of death. Efforts to develop effective therapeutic strategies have focused on vascular inflammation as a critical pathology driving atherosclerosis progression. Nonetheless, molecular mechanisms underlying this activity remain unclear. Here, we ask whether angiopoietin-like protein 2 (Angptl2), a proinflammatory protein, contributes to vascular inflammation that promotes atherosclerosis progression. APPROACH AND RESULTS: Histological analysis revealed abundant Angptl2 expression in endothelial cells and macrophages infiltrating atheromatous plaques in patients with cardiovascular disease. Angptl2 knockout in apolipoprotein E-deficient mice (ApoE(-/-)/Angptl2(-/-)) attenuated atherosclerosis progression by decreasing the number of macrophages infiltrating atheromatous plaques, reducing vascular inflammation. Bone marrow transplantation experiments showed that Angptl2 deficiency in endothelial cells attenuated atherosclerosis development. Conversely, ApoE(-/-) mice crossed with transgenic mice expressing Angptl2 driven by the Tie2 promoter (ApoE(-/-)/Tie2-Angptl2 Tg), which drives Angptl2 expression in endothelial cells but not monocytes/macrophages, showed accelerated plaque formation and vascular inflammation because of increased numbers of infiltrated macrophages in atheromatous plaques. Tie2-Angptl2 Tg mice alone did not develop plaques but exhibited endothelium-dependent vasodilatory dysfunction, likely because of decreased production of endothelial cell-derived nitric oxide. Conversely, Angptl2(-/-) mice exhibited less severe endothelial dysfunction than did wild-type mice when fed a high-fat diet. In vitro, Angptl2 activated proinflammatory nuclear factor-κB signaling in endothelial cells and increased monocyte/macrophage chemotaxis. CONCLUSIONS: Endothelial cell-derived Angptl2 accelerates vascular inflammation by activating proinflammatory signaling in endothelial cells and increasing macrophage infiltration, leading to endothelial dysfunction and atherosclerosis progression.


Asunto(s)
Angiopoyetinas/metabolismo , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Mediadores de Inflamación/metabolismo , Vasculitis/metabolismo , Anciano de 80 o más Años , Proteína 2 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/deficiencia , Angiopoyetinas/genética , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/inmunología , Aterosclerosis/patología , Aterosclerosis/prevención & control , Trasplante de Médula Ósea , Células Cultivadas , Quimiotaxis de Leucocito , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Dislipidemias/metabolismo , Dislipidemias/fisiopatología , Células Endoteliales/inmunología , Células Endoteliales/patología , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Femenino , Humanos , Integrina alfa5beta1/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Monocitos/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Óxido Nítrico/metabolismo , Obesidad/metabolismo , Obesidad/fisiopatología , Placa Aterosclerótica , Transducción de Señal , Factores de Tiempo , Vasculitis/genética , Vasculitis/inmunología , Vasculitis/patología , Vasculitis/prevención & control , Vasodilatación
5.
Biochem Biophys Res Commun ; 430(1): 20-5, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23149415

RESUMEN

Angiopoietin-1 (Angpt1) signaling via the Tie2 receptor regulates vascular and hematopoietic systems. To investigate the role of Angpt1-Tie2 signaling in hematopoiesis, we prepared conditionally inducible transgenic (Tg) mice expressing a genetically engineered Angpt1, cartridge oligomeric matrix protein (COMP)-Angpt1. The effects of COMP-Angpt1 overexpression in osteoblasts on hematopoiesis were then investigated by crossing COMP-Angpt1 Tg mice with Col1a1-Cre Tg mice. Interestingly, peripheral blood analyses showed that 4 week (wk)-old (but not 8 wk-old) Col1a1-Cre+/COMP-Angpt1+ mice had a lower percentage of circulating B cells and a higher percentage of myeloid cells than Col1a1-Cre-/COMP-Angpt1+ (control) mice. Although there were no significant differences in the immunophenotypic hematopoietic stem and progenitor cell (HSPC) populations between Col1a1-Cre+/COMP-Angpt1+ and control mice, lineage(-)Sca-1(+)c-Kit(+) (LSK) cells isolated from 8 wk-old Col1a1-Cre+/COMP-Angpt1+ mice showed better long-term bone marrow reconstitution ability. These data indicate that Angpt1-Tie2 signaling affects the differentiation capacity of hematopoietic lineages during development and increases the stem cell activity of HSCs.


Asunto(s)
Angiopoyetina 1/metabolismo , Linaje de la Célula , Hematopoyesis , Células Madre Hematopoyéticas/citología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Angiopoyetina 1/genética , Animales , Vasos Sanguíneos/anomalías , Células de la Médula Ósea/citología , Separación Celular , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Pérdida del Embrión/genética , Pérdida del Embrión/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Proteínas Matrilinas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoblastos/metabolismo , Receptor TIE-2 , Transducción de Señal
6.
Biochem Biophys Res Commun ; 441(1): 196-201, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24140061

RESUMEN

Nucleostemin is a nucleolar protein known to play a variety of roles in cell-cycle progression, apoptosis inhibition, and DNA damage protection in embryonic stem cells and tissue stem cells. However, the role of nucleostemin in hematopoietic stem cells (HSCs) is yet to be determined. Here, we identified an indispensable role of nucleostemin in mouse HSCs. Depletion of nucleostemin using short hairpin RNA strikingly impaired the self-renewal activity of HSCs both in vitro and in vivo. Consistently, nucleostemin depletion triggered apoptosis rather than cell-cycle arrest in HSCs. Furthermore, DNA damage accumulated during cultivation upon depletion of nucleostemin. The impaired self-renewal activity of HSCs induced by nucleostemin depletion was partially rescued by p53 deficiency but not by p16(Ink4a) or p19(Arf) deficiency. Taken together, our study demonstrates that nucleostemin protects HSCs from DNA damage accumulation and is required for the maintenance of HSCs.


Asunto(s)
Proteínas Portadoras/metabolismo , Inestabilidad Genómica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Apoptosis , Células de la Médula Ósea/metabolismo , Ciclo Celular , Ensayo de Unidades Formadoras de Colonias , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Proteínas de Unión al GTP , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , Proteína p53 Supresora de Tumor/metabolismo
7.
Blood ; 117(16): 4169-80, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21297001

RESUMEN

Telomerase reverse transcriptase (TERT) contributes to the prevention of aging by a largely unknown mechanism that is unrelated to telomere lengthening. The current study used ataxia-telangiectasia mutated (ATM) and TERT doubly deficient mice to evaluate the contributions of 2 aging-regulating molecules, TERT and ATM, to the aging process. ATM and TERT doubly deficient mice demonstrated increased progression of aging and had shorter lifespans than ATM-null mice, while TERT alone was insufficient to affect lifespan. ATM-TERT doubly null mice show in vivo senescence, especially in hematopoietic tissues, that was dependent on p16(INK4a) and p19(ARF), but not on p21. As their HSCs show decreased stem cell activities, accelerated aging seen in these mice has been attributed to impaired stem cell function. TERT-deficient HSCs are characterized by reactive oxygen species (ROS) fragility, which has been suggested to cause stem cell impairment during aging, and apoptotic HSCs are markedly increased in these mice. p38MAPK activation was indicated to be partially involved in ROS-induced apoptosis in TERT-null HSCs, and BCL-2 is suggested to provide a part of the protective mechanisms of HSCs by TERT. The current study demonstrates that TERT mitigates aging by protecting HSCs under stressful conditions through telomere length-independent mechanisms.


Asunto(s)
Envejecimiento , Apoptosis , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Células Madre Hematopoyéticas/citología , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Telomerasa/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Senescencia Celular , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Telomerasa/genética , Telómero/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Nat Med ; 12(4): 446-51, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16565722

RESUMEN

Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm(-/-) mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS-p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.


Asunto(s)
Senescencia Celular/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Butionina Sulfoximina/farmacología , Técnicas de Cultivo de Célula , Línea Celular , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Depuradores de Radicales Libres/farmacología , Imidazoles/farmacología , Inmunohistoquímica , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Estrés Oxidativo , Fosforilación , Piridinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
9.
Commun Biol ; 6(1): 996, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773433

RESUMEN

Protection of telomeres 1a (POT1a) is a telomere binding protein. A decrease of POT1a is related to myeloid-skewed haematopoiesis with ageing, suggesting that protection of telomeres is essential to sustain multi-potency. Since mesenchymal stem cells (MSCs) are a constituent of the hematopoietic niche in bone marrow, their dysfunction is associated with haematopoietic failure. However, the importance of telomere protection in MSCs has yet to be elucidated. Here, we show that genetic deletion of POT1a in MSCs leads to intracellular accumulation of fatty acids and excessive ROS and DNA damage, resulting in impaired osteogenic-differentiation. Furthermore, MSC-specific POT1a deficient mice exhibited skeletal retardation due to reduction of IL-7 producing bone lining osteoblasts. Single-cell gene expression profiling of bone marrow from POT1a deficient mice revealed that B-lymphopoiesis was selectively impaired. These results demonstrate that bone marrow microenvironments composed of POT1a deficient MSCs fail to support B-lymphopoiesis, which may underpin age-related myeloid-bias in haematopoiesis.


Asunto(s)
Linfopoyesis , Telómero , Animales , Ratones , Envejecimiento , Diferenciación Celular , Linfopoyesis/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
10.
Biochem Biophys Res Commun ; 428(3): 354-9, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23092738

RESUMEN

Adult hematopoietic stem cells (HSCs) are maintained in a microenvironment known as the stem cell niche. The regulation of HSCs in fetal liver (FL) and their niche, however, remains to be elucidated. In this study, we investigated the role of N-cadherin (N-cad) in the maintenance of HSCs during FL hematopoiesis. By using anti-N-cad antibodies (Abs) produced by our laboratory, we detected high N-cad expression in embryonic day 12.5 (E12.5) mouse FL HSCs, but not in E15.5 and E18.5 FL. Immunofluorescence staining revealed that N-cad(+)c-Kit(+) and N-cad(+) endothelial protein C receptor (EPCR)(+) HSCs co-localized with Lyve-1(+) sinusoidal endothelial cells (ECs) in E12.5 FL and that some of these cells also expressed N-cad. However, N-cad(+) HSCs were also observed to detach from the perisinusoidal niche at E15.5 and E18.5, concomitant with a down-regulation of N-cad and an up-regulation of E-cadherin (E-cad) in hepatic cells. Moreover, EPCR(+) long-term (LT)-HSCs were enriched in the N-cad(+)Lin(-)Sca-1(+)c-Kit(+) (LSK) fraction in E12.5 FL, but not in E15.5 or E18.5 FL. In a long-term reconstitution (LTR) activity assay, higher engraftment associated with N-cad(+) LSK cells versus N-cad(-) LSK cells in E12.5 FL when transplanted into lethally irradiated recipient mice. However, the higher engraftment of N-cad(+) LSK cells decreased subsequently in E15.5 and E18.5 FL. It is possible that N-cad expression conferred higher LTR activity to HSCs by facilitating interactions with the perisinusoidal niche, especially at E12.5. The down-regulation of N-cad during FL hematopoiesis may help us better understand the regulation and mobility of HSCs before migration into BM.


Asunto(s)
Médula Ósea/fisiología , Cadherinas/metabolismo , Feto/fisiología , Hematopoyesis Extramedular , Células Madre Hematopoyéticas/fisiología , Hígado/embriología , Animales , Cadherinas/análisis , Movimiento Celular , Regulación hacia Abajo , Células Endoteliales/fisiología , Femenino , Glicoproteínas/análisis , Glicoproteínas/metabolismo , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL
11.
Blood ; 116(4): 554-63, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20427705

RESUMEN

During postnatal life, the bone marrow (BM) supports both self-renewal and differentiation of hematopoietic stem cells (HSCs) in specialized microenvironments termed stem cell niches. Cell-cell and cell-extracellular matrix interactions between HSCs and their niches are critical for the maintenance of HSC properties. Here, we analyzed the function of N-cadherin in the regulation of the proliferation and long-term repopulation activity of hematopoietic stem/progenitor cells (HSPCs) by the transduction of N-cadherin shRNA. Inhibition of N-cadherin expression accelerated cell division in vitro and reduced the lodgment of donor HSPCs to the endosteal surface, resulting in a significant reduction in long-term engraftment. Cotransduction of N-cadherin shRNA and a mutant N-cadherin that introduced the silent mutations to shRNA target sequences rescued the accelerated cell division and reconstitution phenotypes. In addition, the requirement of N-cadherin for HSPC engraftment appears to be niche specific, as shN-cad-transduced lineage(-)Sca-1(+)c-Kit(+) cells successfully engrafted in spleen, which lacks an osteoblastic niche. These findings suggest that N-cad-mediated cell adhesion is functionally required for the establishment of hematopoiesis in the BM niche after BM transplantation.


Asunto(s)
Cadherinas/genética , Supervivencia de Injerto/genética , Trasplante de Células Madre Hematopoyéticas , Animales , Cadherinas/fisiología , Adhesión Celular/genética , Adhesión Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Supervivencia Celular/genética , Células Cultivadas , Técnicas de Silenciamiento del Gen , Células Madre Hematopoyéticas/fisiología , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Células 3T3 NIH , Nicho de Células Madre/fisiología , Factores de Tiempo
12.
Blood ; 116(9): 1422-32, 2010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20472830

RESUMEN

The endosteal niche is critical for the maintenance of hematopoietic stem cells (HSCs). However, it consists of a heterogeneous population in terms of differentiation stage and function. In this study, we characterized endosteal cell populations and examined their ability to maintain HSCs. Bone marrow endosteal cells were subdivided into immature mesenchymal cell-enriched ALCAM(-)Sca-1(+) cells, osteoblast-enriched ALCAM(+)Sca-1(-), and ALCAM(-)Sca-1(-) cells. We found that all 3 fractions maintained long-term reconstitution (LTR) activity of HSCs in an in vitro culture. In particular, ALCAM(+)Sca-1(-) cells significantly enhanced the LTR activity of HSCs by the up-regulation of homing- and cell adhesion-related genes in HSCs. Microarray analysis showed that ALCAM(-)Sca-1(+) fraction highly expressed cytokine-related genes, whereas the ALCAM(+)Sca-1(-) fraction expressed multiple cell adhesion molecules, such as cadherins, at a greater level than the other fractions, indicating that the interaction between HSCs and osteoblasts via cell adhesion molecules enhanced the LTR activity of HSCs. Furthermore, we found an osteoblastic marker(low/-) subpopulation in ALCAM(+)Sca-1(-) fraction that expressed cytokines, such as Angpt1 and Thpo, and stem cell marker genes. Altogether, these data suggest that multiple subsets of osteoblasts and mesenchymal progenitor cells constitute the endosteal niche and regulate HSCs in adult bone marrow.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Biomarcadores/metabolismo , Western Blotting , Huesos/citología , Huesos/metabolismo , Diferenciación Celular , Ensayo de Unidades Formadoras de Colonias , Perfilación de la Expresión Génica , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Nature ; 431(7011): 997-1002, 2004 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-15496926

RESUMEN

The 'ataxia telangiectasia mutated' (Atm) gene maintains genomic stability by activating a key cell-cycle checkpoint in response to DNA damage, telomeric instability or oxidative stress. Mutational inactivation of the gene causes an autosomal recessive disorder, ataxia-telangiectasia, characterized by immunodeficiency, progressive cerebellar ataxia, oculocutaneous telangiectasia, defective spermatogenesis, premature ageing and a high incidence of lymphoma. Here we show that ATM has an essential function in the reconstitutive capacity of haematopoietic stem cells (HSCs) but is not as important for the proliferation or differentiation of progenitors, in a telomere-independent manner. Atm-/- mice older than 24 weeks showed progressive bone marrow failure resulting from a defect in HSC function that was associated with elevated reactive oxygen species. Treatment with anti-oxidative agents restored the reconstitutive capacity of Atm-/- HSCs, resulting in the prevention of bone marrow failure. Activation of the p16(INK4a)-retinoblastoma (Rb) gene product pathway in response to elevated reactive oxygen species led to the failure of Atm-/- HSCs. These results show that the self-renewal capacity of HSCs depends on ATM-mediated inhibition of oxidative stress.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/metabolismo , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular , División Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN , Eliminación de Gen , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor
14.
Cell Syst ; 11(6): 640-652.e5, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33296684

RESUMEN

Changes in stem cell activity may underpin aging. However, these changes are not completely understood. Here, we combined single-cell profiling with machine learning and in vivo functional studies to explore how hematopoietic stem cell (HSC) divisions patterns evolve with age. We first trained an artificial neural network (ANN) to accurately identify cell types in the hematopoietic hierarchy and predict their age from single-cell gene-expression patterns. We then used this ANN to compare identities of daughter cells immediately after HSC divisions and found that the self-renewal ability of individual HSCs declines with age. Furthermore, while HSC cell divisions are deterministic and intrinsically regulated in young and old age, they are variable and niche sensitive in mid-life. These results indicate that the balance between intrinsic and extrinsic regulation of stem cell activity alters substantially with age and help explain why stem cell numbers increase through life, yet regenerative potency declines.


Asunto(s)
Envejecimiento/inmunología , Diferenciación Celular/inmunología , División Celular/inmunología , Aprendizaje Automático/normas , Células Madre Hematopoyéticas/metabolismo , Humanos
15.
iScience ; 23(11): 101654, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33103089

RESUMEN

p32/C1qbp regulates mitochondrial protein synthesis and is essential for oxidative phosphorylation in mitochondria. Although dysfunction of p32/C1qbp impairs fetal development and immune responses, its role in hematopoietic differentiation remains unclear. Here, we found that mitochondrial dysfunction affected terminal differentiation of newly identified erythroid/B-lymphoid progenitors among CD45- Ter119- CD31- triple-negative cells (TNCs) in bone marrow. Hematopoietic cell-specific genetic deletion of p32/C1qbp (p32cKO) in mice caused anemia and B-lymphopenia without reduction of hematopoietic stem/progenitor cells. In addition, p32cKO mice were susceptible to hematopoietic stress with delayed recovery from anemia. p32/C1qbp-deficient CD51- TNCs exhibited impaired mitochondrial oxidation that consequently led to inactivation of mTORC1 signaling, which is essential for erythropoiesis. These findings uncover the importance of mitochondria, especially at the stage of TNCs during erythropoiesis, suggesting that dysregulation of mitochondrial protein synthesis is a cause of anemia and B-lymphopenia with an unknown pathology.

16.
Biochem Biophys Res Commun ; 378(3): 467-72, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19032938

RESUMEN

Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2Rgamma(null) (NOG) mice. Hypoxic culture (1% O(2)) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34(+)CD38(-) cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.


Asunto(s)
Diferenciación Celular , Sangre Fetal/citología , Células Madre Hematopoyéticas/fisiología , Anaerobiosis , Animales , Antígenos CD34/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Sangre Fetal/fisiología , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Ratones Mutantes , Trasplante Heterólogo , Regulación hacia Arriba
17.
Int J Hematol ; 107(6): 646-655, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29550946

RESUMEN

In order to maintain the homeostasis of the hematopoietic system, hematopoietic stem cells (HSCs) need to be maintained while slowly dividing over their lifetime. However, repeated cell divisions lead to the gradual accumulation of DNA damage and ultimately impair HSC function. Since telomeres are particularly fragile when subjected to replication stress, cells have several defense machinery to protect telomeres. Moreover, HSCs must protect their genome against possible DNA damage, while maintaining telomere length. A group of proteins called the shelterin complex are deeply involved in this two-way role, and it is highly resistant to the replication stress to which HSCs are subjected. Most shelterin-deficient experimental models suffer acute cytotoxicity and severe phenotypes, as each shelterin component is essential for telomere protection. The Tin2 point mutant mice show a dyskeratosis congenita (DC) like phenotype, and the Tpp1 deletion impairs the hematopoietic system. POT1/Pot1a is highly expressed in HSCs and contributes to the maintenance of the HSC pool during in vitro culture. Here, we discuss the role of shelterin molecules in HSC regulation and review current understanding of how these are regulated in the maintenance of the HSC pool and the development of hematological disorders.


Asunto(s)
Hematopoyesis/genética , Células Madre Hematopoyéticas , Proteínas de Unión a Telómeros/fisiología , Telómero , Proteína 2 de Unión a Repeticiones Teloméricas/fisiología , Aminopeptidasas/genética , Animales , División Celular/genética , Daño del ADN , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Disqueratosis Congénita , Eliminación de Gen , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Ratones , Mutación , Serina Proteasas/genética , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Proteína 2 de Unión a Repeticiones Teloméricas/deficiencia
18.
Nat Commun ; 8(1): 804, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28986560

RESUMEN

Repeated cell divisions and aging impair stem cell function. However, the mechanisms by which this occurs are not fully understood. Here we show that protection of telomeres 1A (Pot1a), a component of the Shelterin complex that protects telomeres, improves haematopoietic stem cell (HSC) activity during aging. Pot1a is highly expressed in young HSCs, but declines with age. In mouse HSCs, Pot1a knockdown increases DNA damage response (DDR) and inhibits self-renewal. Conversely, Pot1a overexpression or treatment with POT1a protein prevents DDR, maintained self-renewal activity and rejuvenated aged HSCs upon ex vivo culture. Moreover, treatment of HSCs with exogenous Pot1a inhibits the production of reactive oxygen species, suggesting a non-telomeric role for Pot1a in HSC maintenance. Consistent with these results, treatment with exogenous human POT1 protein maintains human HSC activity in culture. Collectively, these results show that Pot1a/POT1 sustains HSC activity and can be used to expand HSC numbers ex vivo.Repeated cell divisions induce DNA damage in haematopoietic stem cells (HSC) and telomeres are sensitive to this damage. Here, the authors show in murine HSCs that the telomere binding protein POT1a inhibited the production of reactive oxygen species, and rejuvenated aged HSCs.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Células Madre Hematopoyéticas/fisiología , Animales , Células Cultivadas , Senescencia Celular/genética , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Complejo Shelterina , Telómero/metabolismo , Telómero/fisiología , Proteínas de Unión a Telómeros
19.
Ann N Y Acad Sci ; 1266: 72-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22901259

RESUMEN

Cell-cell and cell-extracellular matrix interactions between hematopoietic stem cells (HSCs) and their niches are critical for the maintenance of stem cell properties. Here, it is demonstrated that a cell adhesion molecule, N-cadherin, is expressed in hematopoietic stem/progenitor cells (HSPCs) and plays a critical role in the regulation of HSPC engraftment. Furthermore, overexpression of N-cadherin in HSCs promoted quiescence and preserved HSC activity during serial bone marrow (BM) transplantation (BMT). Inhibition of N-cadherin by the transduction of N-cadherin short hairpin (sh) RNA (shN-cad) reduced the lodgment of donor HSCs to the endosteal surface, resulting in a significant reduction in long-term engraftment. shN-cad-transduced cells were maintained in the spleen for six months after BMT, indicating that N-cadherin expression in HSCs is specifically required in the BM. These findings suggest that N-cadherin-mediated cell adhesion is functionally essential for the regulation of HSPC activities in the BM niche.


Asunto(s)
Cadherinas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Nicho de Células Madre/fisiología , Animales , Trasplante de Médula Ósea , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Hematopoyesis/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/clasificación , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Células 3T3 NIH , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Nicho de Células Madre/genética , Estrés Fisiológico
20.
Cell Stem Cell ; 9(3): 247-61, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21885020

RESUMEN

Cell cycle regulators play critical roles in the balance between hematopoietic stem cell (HSC) dormancy and proliferation. In this study, we report that cell cycle entry proceeded normally in HSCs null for cyclin-dependent kinase (CDK) inhibitor p57 due to compensatory upregulation of p27. HSCs null for both p57 and p27, however, were more proliferative and had reduced capacity to engraft in transplantation. We found that heat shock cognate protein 70 (Hsc70) interacts with both p57 and p27 and that the subcellular localization of Hsc70 was critical to maintain HSC cell cycle kinetics. Combined deficiency of p57 and p27 in HSCs resulted in nuclear import of an Hsc70/cyclin D1 complex, concomitant with Rb phosphorylation, and elicited severe defects in maintaining HSC quiescence. Taken together, these data suggest that regulation of cytoplasmic localization of Hsc70/cyclin D1 complex by p57 and p27 is a key intracellular mechanism in controlling HSC dormancy.


Asunto(s)
Ciclina D1/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Células Madre Hematopoyéticas/metabolismo , Animales , Ciclo Celular/genética , Proliferación Celular , Células Cultivadas , Senescencia Celular/genética , Ciclina D1/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Hematopoyéticas/patología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda