Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 122(19): 198002, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31144934

RESUMEN

Colloidal Janus spheres in the bulk typically spontaneously assemble into plastic crystalline phases, while particle orientations exhibit glasslike dynamics without long-range order. Through Brownian dynamics simulations, we demonstrate that shear can trigger a phase transition from an isotropic crystal with orientational disorder to an orientationally ordered crystal with lamellae along the shear direction. This nonequilibrium transition is accompanied with the orientational ordering following a nucleation and growth mechanism. By performing a phenomenological extension of free energy analysis, we reveal that the nucleation originates from the orientation fluctuations induced by shear. The growth of the orientationally crystalline cluster is examined to be disklike, captured by developing a lattice model with memoryless state functions. These findings bring new insights into the mechanisms for the ordering transition of anisotropic particles at nonequilibrium states.

2.
Entropy (Basel) ; 21(2)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33266901

RESUMEN

Polymer nanocomposite materials, consisting of a polymer matrix embedded with nanoscale fillers or additives that reinforce the inherent properties of the matrix polymer, play a key role in many industrial applications. Understanding of the relation between thermodynamic interactions and macroscopic morphologies of the composites allow for the optimization of design and mechanical processing. This review article summarizes the recent advancement in various aspects of entropic effects in polymer nanocomposites, and highlights molecular methods used to perform numerical simulations, morphologies and phase behaviors of polymer matrices and fillers, and characteristic parameters that significantly correlate with entropic interactions in polymer nanocomposites. Experimental findings and insight obtained from theories and simulations are combined to understand how the entropic effects are turned into effective interparticle interactions that can be harnessed for tailoring nanostructures of polymer nanocomposites.

3.
Nanoscale Horiz ; 7(9): 1016-1028, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35762392

RESUMEN

Entropy can be the sole driving force for the construction and regulation of ordered structures of soft matter systems. Specifically, under confinement, the entropic penalty could induce enhanced entropic effects which potentially generate visually ordered structures. Therefore, spatial confinement or a crowding environment offers an important approach to control entropy effects in these systems. Here, we review how spatial confinement-mediated entropic effects accurately and even dynamically control the self-assembly of nanoscale objects into ordered structures, focusing on our efforts towards computer simulations and theoretical analysis. First, we introduce the basic principle of entropic ordering through confinement. We then introduce the applications of this concept to various systems containing nanoparticles, including polymer nanocomposites, biological macromolecular systems and macromolecular colloids. Finally, the future directions and challenges for tailoring nanoparticle organization through spatial confinement-mediated entropic effects are detailed. We expect that this review could stimulate further efforts in the fundamental research on the relationship between confinement and entropy and in the applications of this concept for designer nanomaterials.


Asunto(s)
Nanopartículas , Coloides , Simulación por Computador , Entropía , Nanopartículas/química , Polímeros/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda