Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33035452

RESUMEN

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Asunto(s)
Músculo Esquelético/metabolismo , Miosinas del Músculo Esquelético/efectos de los fármacos , Miosinas del Músculo Esquelético/genética , Adulto , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Línea Celular , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Masculino , Ratones , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Espasticidad Muscular/genética , Espasticidad Muscular/fisiopatología , Músculo Esquelético/fisiología , Miosinas/efectos de los fármacos , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas , Ratas , Ratas Wistar , Miosinas del Músculo Esquelético/metabolismo
2.
PLoS Comput Biol ; 20(4): e1012005, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662764

RESUMEN

Myosin motors use the energy of ATP to produce force and directed movement on actin by a swing of the lever-arm. ATP is hydrolysed during the off-actin re-priming transition termed recovery stroke. To provide an understanding of chemo-mechanical transduction by myosin, it is critical to determine how the reverse swing of the lever-arm and ATP hydrolysis are coupled. Previous studies concluded that the recovery stroke of myosin II is initiated by closure of the Switch II loop in the nucleotide-binding site. Recently, we proposed that the recovery stroke of myosin VI starts with the spontaneous re-priming of the converter domain to a putative pre-transition state (PTS) intermediate that precedes Switch II closing and ATPase activation. Here, we investigate the transition from the pre-recovery, post-rigor (PR) state to PTS in myosin VI using geometric free energy simulations and the string method. First, our calculations rediscover the PTS state agnostically and show that it is accessible from PR via a low free energy transition path. Second, separate path calculations using the string method illuminate the mechanism of the PR to PTS transition with atomic resolution. In this mechanism, the initiating event is a large movement of the converter/lever-arm region that triggers rearrangements in the Relay-SH1 region and the formation of the kink in the Relay helix with no coupling to the active site. Analysis of the free-energy barriers along the path suggests that the converter-initiated mechanism is much faster than the one initiated by Switch II closure, which supports the biological relevance of PTS as a major on-pathway intermediate of the recovery stroke in myosin VI. Our analysis suggests that lever-arm re-priming and ATP hydrolysis are only weakly coupled, so that the myosin recovery stroke is initiated by thermal fluctuations and stabilised by nucleotide consumption via a ratchet-like mechanism.


Asunto(s)
Biología Computacional , Simulación de Dinámica Molecular , Cadenas Pesadas de Miosina , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Sitios de Unión , Biología Computacional/métodos , Hidrólisis , Modelos Moleculares , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/química , Conformación Proteica , Termodinámica
3.
Cell ; 141(4): 573-82, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20478251

RESUMEN

Myosin VI is the only type of myosin motor known to move toward the minus ends of actin filaments. This reversal in the direction of its movement is in part a consequence of the repositioning of its lever arm. In addition, myosin VI has a number of other specialized structural and functional adaptations that optimize performance of its unique cellular roles. Given that other classes of myosins may share some of these features, understanding the design principles of myosin VI will help guide the study of the functions of myosins that adopt similar strategies.


Asunto(s)
Cadenas Pesadas de Miosina/metabolismo , Actinas/metabolismo , Animales , Humanos , Modelos Moleculares , Cadenas Pesadas de Miosina/química
4.
Cell ; 136(3): 395-6, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19203573

RESUMEN

Motor proteins, such as dynein, use chemical energy from ATP hydrolysis to move along the cytoskeleton. Roberts et al. (2009) now describe the arrangement of subdomains in the motor domain of dynein and propose a model for how these regions function together in force generation.


Asunto(s)
Dictyostelium/metabolismo , Dineínas/metabolismo , Animales , Dictyostelium/ultraestructura , Dineínas/ultraestructura , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/ultraestructura
5.
Chem Rev ; 120(1): 5-35, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31689091

RESUMEN

Generating force and movement is essential for the functions of cells and organisms. A variety of molecular motors that can move on tracks within cells have evolved to serve this role. How these motors interact with their tracks and how that, in turn, leads to the generation of force and movement is key to understanding the cellular roles that these motor-track systems serve. This review is focused on the best understood of these systems, which is the molecular motor myosin that moves on tracks of filamentous (F-) actin. The review highlights both the progress and the limits of our current understanding of how force generation can be controlled by F-actin-myosin interactions. What has emerged are insights they may serve as a framework for understanding the design principles of a number of types of molecular motors and their interactions with their tracks.


Asunto(s)
Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Miosinas/química , Miosinas/metabolismo , Actinas/química , Actinas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Humanos , Fenómenos Mecánicos , Modelos Moleculares , Dominios Proteicos
6.
Proc Natl Acad Sci U S A ; 116(44): 22196-22204, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611382

RESUMEN

Filopodia are actin-filled protrusions employed by cells to interact with their environment. Filopodia formation in Amoebozoa and Metazoa requires the phylogenetically diverse MyTH4-FERM (MF) myosins DdMyo7 and Myo10, respectively. While Myo10 is known to form antiparallel dimers, DdMyo7 lacks a coiled-coil domain in its proximal tail region, raising the question of how such divergent motors perform the same function. Here, it is shown that the DdMyo7 lever arm plays a role in both autoinhibition and function while the proximal tail region can mediate weak dimerization, and is proposed to be working in cooperation with the C-terminal MF domain to promote partner-mediated dimerization. Additionally, a forced dimer of the DdMyo7 motor is found to weakly rescue filopodia formation, further highlighting the importance of the C-terminal MF domain. Thus, weak dimerization activity of the DdMyo7 proximal tail allows for sensitive regulation of myosin activity to prevent inappropriate activation of filopodia formation. The results reveal that the principles of MF myosin-based filopodia formation are conserved via divergent mechanisms for dimerization.


Asunto(s)
Miosinas/metabolismo , Proteínas Protozoarias/metabolismo , Seudópodos/metabolismo , Dictyostelium , Miosinas/química , Dominios Proteicos , Multimerización de Proteína , Proteínas Protozoarias/química
7.
Proc Natl Acad Sci U S A ; 115(24): 6213-6218, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844196

RESUMEN

Myosins form a class of actin-based, ATPase motor proteins that mediate important cellular functions such as cargo transport and cell motility. Their functional cycle involves two large-scale swings of the lever arm: the force-generating powerstroke, which takes place on actin, and the recovery stroke during which the lever arm is reprimed into an armed configuration. Previous analyses of the prerecovery (postrigor) and postrecovery (prepowerstroke) states predicted that closure of switch II in the ATP binding site precedes the movement of the converter and the lever arm. Here, we report on a crystal structure of myosin VI, called pretransition state (PTS), which was solved at 2.2 Å resolution. Structural analysis and all-atom molecular dynamics simulations are consistent with PTS being an intermediate along the recovery stroke, where the Relay/SH1 elements adopt a postrecovery conformation, and switch II remains open. In this state, the converter appears to be largely uncoupled from the motor domain and explores an ensemble of partially reprimed configurations through extensive, reversible fluctuations. Moreover, we found that the free energy cost of hydrogen-bonding switch II to ATP is lowered by more than 10 kcal/mol compared with the prerecovery state. These results support the conclusion that closing of switch II does not initiate the recovery stroke transition in myosin VI. Rather, they suggest a mechanism in which lever arm repriming would be mostly driven by thermal fluctuations and eventually stabilized by the switch II interaction with the nucleotide in a ratchet-like fashion.


Asunto(s)
Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Animales , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Porcinos , Termodinámica
8.
Trends Biochem Sci ; 41(12): 989-997, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27717739

RESUMEN

How myosin interacts with actin to generate force is a subject of considerable controversy. The major debate centers on understanding at what point in force generation the inorganic phosphate is released with respect to the lever arm swing, or powerstroke. Resolving the controversy is essential for understanding how force is produced as well as the mechanisms underlying disease-causing mutations in myosin. Recent structural insights into the powerstroke have come from a high-resolution structure of myosin in a previously unseen state and from an electron cryomicroscopy (cryo-EM) 3D reconstruction of the actin-myosin-MgADP complex. Here, we argue that seemingly contradictory data from time-resolved fluorescence resonance energy transfer (FRET) studies can be reconciled, and we put forward a model for myosin force generation on actin.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Actinas/química , Adenosina Difosfato/química , Adenosina Trifosfato/química , Miosinas/química , Fosfatos/química , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Fenómenos Biomecánicos , Dominio Catalítico , Transferencia Resonante de Energía de Fluorescencia , Humanos , Mecanotransducción Celular , Miosinas/metabolismo , Fosfatos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas
9.
Mol Cell ; 48(1): 75-86, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22940248

RESUMEN

Myosin VI is the only known reverse-direction myosin motor. It has an unprecedented means of amplifying movements within the motor involving rearrangements of the converter subdomain at the C terminus of the motor and an unusual lever arm projecting from the converter. While the average step size of a myosin VI dimer is 30-36 nm, the step size is highly variable, presenting a challenge to the lever arm mechanism by which all myosins are thought to move. Herein, we present structures of myosin VI that reveal regions of compliance that allow an uncoupling of the lead head when movement is modeled on actin. The location of the compliance restricts the possible actin binding sites and predicts the observed stepping behavior. The model reveals that myosin VI, unlike plus-end directed myosins, does not use a pure lever arm mechanism, but instead steps with a mechanism analogous to the kinesin neck-linker uncoupling model.


Asunto(s)
Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Actinas/química , Actinas/metabolismo , Animales , Sitios de Unión , Fenómenos Biofísicos , Calmodulina/química , Calmodulina/metabolismo , Adaptabilidad , Cristalografía por Rayos X , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Miosinas/química , Miosinas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Porcinos
10.
Mol Cell ; 47(5): 707-21, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22857951

RESUMEN

Doublecortin (Dcx) defines a growing family of microtubule (MT)-associated proteins (MAPs) involved in neuronal migration and process outgrowth. We show that Dcx is essential for the function of Kif1a, a kinesin-3 motor protein that traffics synaptic vesicles. Neurons lacking Dcx and/or its structurally conserved paralogue, doublecortin-like kinase 1 (Dclk1), show impaired Kif1a-mediated transport of Vamp2, a cargo of Kif1a, with decreased run length. Human disease-associated mutations in Dcx's linker sequence (e.g., W146C, K174E) alter Kif1a/Vamp2 transport by disrupting Dcx/Kif1a interactions without affecting Dcx MT binding. Dcx specifically enhances binding of the ADP-bound Kif1a motor domain to MTs. Cryo-electron microscopy and subnanometer-resolution image reconstruction reveal the kinesin-dependent conformational variability of MT-bound Dcx and suggest a model for MAP-motor crosstalk on MTs. Alteration of kinesin run length by MAPs represents a previously undiscovered mode of control of kinesin transport and provides a mechanism for regulation of MT-based transport by local signals.


Asunto(s)
Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Quinasas Similares a Doblecortina , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Microtúbulos/metabolismo , Neuronas/citología , Neuropéptidos/deficiencia , Proteínas Serina-Treonina Quinasas/deficiencia
11.
Adv Exp Med Biol ; 1239: 7-19, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32451853

RESUMEN

Directed movements on actin filaments within the cell are powered by molecular motors of the myosin superfamily. On actin filaments, myosin motors convert the energy from ATP into force and movement. Myosin motors power such diverse cellular functions as cytokinesis, membrane trafficking, organelle movements, and cellular migration. Myosin generates force and movement via a number of structural changes associated with hydrolysis of ATP, binding to actin, and release of the ATP hydrolysis products while bound to actin. Herein we provide an overview of those structural changes and how they relate to the actin-myosin ATPase cycle. These structural changes are the basis of chemo-mechanical transduction by myosin motors.


Asunto(s)
Miosinas/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Hidrólisis , Movimiento , Miosinas/metabolismo
12.
J Cell Sci ; 130(9): 1509-1517, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28373242

RESUMEN

Cytokinetic abscission is the terminal step of cell division, leading to the physical separation of the two daughter cells. The exact mechanism mediating the final scission of the intercellular bridge connecting the dividing cells is not fully understood, but requires the local constriction of endosomal sorting complex required for transport (ESCRT)-III-dependent helices, as well as remodelling of lipids and the cytoskeleton at the site of abscission. In particular, microtubules and actin filaments must be locally disassembled for successful abscission. However, the mechanism that actively removes actin during abscission is poorly understood. In this Commentary, we will focus on the latest findings regarding the emerging role of the MICAL family of oxidoreductases in F-actin disassembly and describe how Rab GTPases regulate their enzymatic activity. We will also discuss the recently reported role of MICAL1 in controlling F-actin clearance in the ESCRT-III-mediated step of cytokinetic abscission. In addition, we will highlight how two other members of the MICAL family (MICAL3 and MICAL-L1) contribute to cytokinesis by regulating membrane trafficking. Taken together, these findings establish the MICAL family as a key regulator of actin cytoskeleton dynamics and membrane trafficking during cell division.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Citocinesis , Familia de Multigenes , Animales , Humanos , Oxidación-Reducción , Transporte de Proteínas
13.
Chembiochem ; 20(7): 968-973, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30803119

RESUMEN

Chemical Biology is the science of designing chemical tools to dissect and manipulate biology at different scales. It provides the fertile ground from which to address important problems of our society, such as human health and environment.


Asunto(s)
Biología , Química , Humanos , Paris
14.
Proc Natl Acad Sci U S A ; 113(50): E8059-E8068, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911821

RESUMEN

The formation of filopodia in Metazoa and Amoebozoa requires the activity of myosin 10 (Myo10) in mammalian cells and of Dictyostelium unconventional myosin 7 (DdMyo7) in the social amoeba Dictyostelium However, the exact roles of these MyTH4-FERM myosins (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in the initiation and elongation of filopodia are not well defined and may reflect conserved functions among phylogenetically diverse MF myosins. Phylogenetic analysis of MF myosin domains suggests that a single ancestral MF myosin existed with a structure similar to DdMyo7, which has two MF domains, and that subsequent duplications in the metazoan lineage produced its functional homolog Myo10. The essential functional features of the DdMyo7 myosin were identified using quantitative live-cell imaging to characterize the ability of various mutants to rescue filopod formation in myo7-null cells. The two MF domains were found to function redundantly in filopod formation with the C-terminal FERM domain regulating both the number of filopodia and their elongation velocity. DdMyo7 mutants consisting solely of the motor plus a single MyTH4 domain were found to be capable of rescuing the formation of filopodia, establishing the minimal elements necessary for the function of this myosin. Interestingly, a chimeric myosin with the Myo10 MF domain fused to the DdMyo7 motor also was capable of rescuing filopod formation in the myo7-null mutant, supporting fundamental functional conservation between these two distant myosins. Together, these findings reveal that MF myosins have an ancient and conserved role in filopod formation.


Asunto(s)
Dictyostelium/genética , Dictyostelium/metabolismo , Evolución Molecular , Miosinas/genética , Miosinas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Seudópodos/genética , Seudópodos/metabolismo , Amebozoos/genética , Amebozoos/metabolismo , Animales , Secuencia Conservada , Dominios FERM/genética , Técnicas de Inactivación de Genes , Genes Protozoarios , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Miosinas/química , Filogenia , Proteínas Protozoarias/química , Seudópodos/química
15.
Proc Natl Acad Sci U S A ; 113(13): E1844-52, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976594

RESUMEN

Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the ß-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a ß-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.


Asunto(s)
Actinas/metabolismo , Adenosina Difosfato/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Actinas/química , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
16.
Proc Natl Acad Sci U S A ; 113(21): E2906-15, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27166421

RESUMEN

Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.


Asunto(s)
Dictyostelium , Evolución Molecular , Miosinas , Proteínas Protozoarias , Dictyostelium/química , Dictyostelium/genética , Dictyostelium/metabolismo , Humanos , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
17.
Proc Natl Acad Sci U S A ; 113(47): E7448-E7455, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27815532

RESUMEN

Direct inhibition of smooth muscle myosin (SMM) is a potential means to treat hypercontractile smooth muscle diseases. The selective inhibitor CK-2018571 prevents strong binding to actin and promotes muscle relaxation in vitro and in vivo. The crystal structure of the SMM/drug complex reveals that CK-2018571 binds to a novel allosteric pocket that opens up during the "recovery stroke" transition necessary to reprime the motor. Trapped in an intermediate of this fast transition, SMM is inhibited with high selectivity compared with skeletal muscle myosin (IC50 = 9 nM and 11,300 nM, respectively), although all of the binding site residues are identical in these motors. This structure provides a starting point from which to design highly specific myosin modulators to treat several human diseases. It further illustrates the potential of targeting transition intermediates of molecular machines to develop exquisitely selective pharmacological agents.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/farmacología , Miosinas del Músculo Liso/antagonistas & inhibidores , Miosinas del Músculo Liso/química , Actinas/metabolismo , Sitio Alostérico , Animales , Cristalografía por Rayos X , Perros , Evaluación Preclínica de Medicamentos , Humanos , Modelos Moleculares , Relajación Muscular , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Unión Proteica/efectos de los fármacos , Ratas
18.
Hum Mutat ; 39(3): 333-344, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29266534

RESUMEN

Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open-access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non-MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno-/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID-associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.


Asunto(s)
Diarrea/congénito , Diarrea/genética , Predisposición Genética a la Enfermedad , Proteínas Munc18/genética , Mutación/genética , Miosina Tipo V/genética , Proteínas Qa-SNARE/genética , Animales , Humanos
19.
Proc Natl Acad Sci U S A ; 112(11): E1201-9, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25751888

RESUMEN

Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.


Asunto(s)
Actinas/metabolismo , Sordera/genética , Mutación/genética , Cadenas Pesadas de Miosina/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Humanos , Cinética , Ratones , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Multimerización de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína , Sus scrofa , Urea/análogos & derivados , Urea/farmacología
20.
Mol Cell ; 35(3): 305-15, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19664948

RESUMEN

Myosin VI challenges the prevailing theory of how myosin motors move on actin: the lever arm hypothesis. While the reverse directionality and large powerstroke of myosin VI can be attributed to unusual properties of a subdomain of the motor (converter with a unique insert), these adaptations cannot account for the large step size on actin. Either the lever arm hypothesis needs modification, or myosin VI has some unique form of extension of its lever arm. We determined the structure of the region immediately distal to the lever arm of the motor and show that it is a three-helix bundle. Based on C-terminal truncations that display the normal range of step sizes on actin, CD, fluorescence studies, and a partial deletion of the bundle, we demonstrate that this bundle unfolds upon dimerization of two myosin VI monomers. This unconventional mechanism generates an extension of the lever arm of myosin VI.


Asunto(s)
Cadenas Pesadas de Miosina/fisiología , Secuencia de Aminoácidos , Animales , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Eliminación de Secuencia , Porcinos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda