Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 174(2): 325-337.e14, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29887380

RESUMEN

Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME. FCHSD2 deletion leads to decreased ligand uptake caused by slowed pit maturation. FCHSD2 is recruited to endocytic pits by the scaffold protein intersectin via an unusual SH3-SH3 interaction. Here, its flat F-BAR domain binds to the planar region of the plasma membrane surrounding the developing pit forming an annulus. When bound to the membrane, FCHSD2 activates actin polymerization by a mechanism that combines oligomerization and recruitment of N-WASP to PI(4,5)P2, thus promoting pit maturation. Our data therefore describe a molecular mechanism for linking spatiotemporally the plasma membrane to a force-generating actin platform guiding endocytic vesicle maturation.


Asunto(s)
Citoesqueleto de Actina/fisiología , Proteínas Portadoras/metabolismo , Clatrina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Membrana Celular/química , Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis , Células HeLa , Humanos , Liposomas/química , Liposomas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Microscopía Fluorescente , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Dominios Homologos src
2.
Nature ; 517(7535): 460-5, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25517094

RESUMEN

Endocytosis is required for internalization of micronutrients and turnover of membrane components. Endophilin has been assigned as a component of clathrin-mediated endocytosis. Here we show in mammalian cells that endophilin marks and controls a fast-acting tubulovesicular endocytic pathway that is independent of AP2 and clathrin, activated upon ligand binding to cargo receptors, inhibited by inhibitors of dynamin, Rac, phosphatidylinositol-3-OH kinase, PAK1 and actin polymerization, and activated upon Cdc42 inhibition. This pathway is prominent at the leading edges of cells where phosphatidylinositol-3,4-bisphosphate-produced by the dephosphorylation of phosphatidylinositol-3,4,5-triphosphate by SHIP1 and SHIP2-recruits lamellipodin, which in turn engages endophilin. This pathway mediates the ligand-triggered uptake of several G-protein-coupled receptors such as α2a- and ß1-adrenergic, dopaminergic D3 and D4 receptors and muscarinic acetylcholine receptor 4, the receptor tyrosine kinases EGFR, HGFR, VEGFR, PDGFR, NGFR and IGF1R, as well as interleukin-2 receptor. We call this new endocytic route fast endophilin-mediated endocytosis (FEME).


Asunto(s)
Aciltransferasas/metabolismo , Endocitosis , Actinas/metabolismo , Línea Celular , Clatrina , Dinaminas/metabolismo , Humanos , Ligandos , Fosfatos de Fosfatidilinositol/metabolismo , Seudópodos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-2/metabolismo , Transducción de Señal , Factores de Tiempo
3.
PLoS Biol ; 11(8): e1001640, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24013648

RESUMEN

Caveolae are an abundant feature of the plasma membrane of many mammalian cell types, and have key roles in mechano-transduction, metabolic regulation, and vascular permeability. Caveolin and cavin proteins, as well as EHD2 and pacsin 2, are all present in caveolae. How these proteins assemble to form a protein interaction network for caveolar morphogenesis is not known. Using in vivo crosslinking, velocity gradient centrifugation, immuno-isolation, and tandem mass spectrometry, we determine that cavins and caveolins assemble into a homogenous 80S complex, which we term the caveolar coat complex. There are no further abundant components within this complex, and the complex excludes EHD2 and pacsin 2. Cavin 1 forms trimers and interacts with caveolin 1 with a molar ratio of about 1∶4. Cavins 2 and 3 compete for binding sites within the overall coat complex, and form distinct subcomplexes with cavin 1. The core interactions between caveolin 1 and cavin 1 are independent of cavin 2, cavin 3, and EHD2 expression, and the cavins themselves can still interact in the absence of caveolin 1. Using immuno-electron microscopy as well as a recently developed protein tag for electron microscopy (MiniSOG), we demonstrate that caveolar coat complexes form a distinct coat all around the caveolar bulb. In contrast, and consistent with our biochemical data, EHD2 defines a different domain at the caveolar neck. 3D electron tomograms of the caveolar coat, labeled using cavin-MiniSOG, show that the caveolar coat is composed of repeating units of a unitary caveolar coat complex.


Asunto(s)
Caveolas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Portadoras/metabolismo , Caveolas/ultraestructura , Caveolina 1/metabolismo , Células HeLa , Humanos , Microscopía Electrónica
4.
Healthc Q ; 17(3): 70-3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25591613

RESUMEN

In the past few years, all of us in healthcare have heard phrases such as "patient engagement," "community engagement," "stakeholder engagement," "patient feedback," "community involvement," "patients as partners in care," "patient centred care," "patient experience" and "patient involvement in healthcare." These phrases (and many more that have not been identified) speak to a process whereby those people who have a legitimate and meaningful relationship with the healthcare organization and its providers should be involved in a meaningful discourse and set of transactions with the organization and the providers. If involvement doesn't happen naturally, then there is a sense that some sort of definitive outreach should occur that will engage and enroll meaningful involvement in a variety of ways.


Asunto(s)
Centros Médicos Académicos/organización & administración , Participación de la Comunidad/métodos , Participación del Paciente/métodos , Centros Médicos Académicos/métodos , Relaciones Comunidad-Institución , Humanos , Ontario , Defensa del Paciente
5.
J Cell Sci ; 124(Pt 16): 2777-85, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21807942

RESUMEN

The pacsin (also termed syndapin) protein family is well characterised structurally. They contain F-BAR domains associated with the generation or maintenance of membrane curvature. The cell biology of these proteins remains less understood. Here, we initially confirm that EHD2, a protein previously shown biochemically to be present in caveolar fractions and to bind to pacsins, is a caveolar protein. We go on to report that GFP-pacsin 2 can be recruited to caveolae, and that endogenous pacsin 2 partially colocalises with caveolin 1 at the plasma membrane. Analysis of the role of pacsin 2 in caveolar biogenesis using small interfering RNA (siRNA) reveals that loss of pacsin 2 function results in loss of morphologically defined caveolae and accumulation of caveolin proteins within the plasma membrane. Overexpression of the F-BAR domain of pacsin 2 (but not the related F-BAR domains of CIP4 and FBP17) disrupts caveolar morphogenesis or trafficking, implying that pacsin 2 interacts with components required for these processes. We propose that pacsin 2 has an important role in the formation of plasma membrane caveolae.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Caveolas/fisiología , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Fibroblastos/fisiología , Proteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Caveolas/ultraestructura , Membrana Celular/ultraestructura , Clonación Molecular , Proteínas del Citoesqueleto , Fibroblastos/ultraestructura , Humanos , Ratones , Microscopía Electrónica , Células 3T3 NIH , Estructura Terciaria de Proteína/genética , Transporte de Proteínas/genética , Proteínas/genética , ARN Interferente Pequeño/genética , Transgenes/genética
6.
J Cell Sci ; 123(Pt 19): 3226-34, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20807800

RESUMEN

We investigated the link between cell movement and plasma membrane recycling using a fast-acting, temperature-sensitive mutant of the Dictyostelium SecA exocytic protein. Strikingly, most mutant cells become almost paralysed within minutes at the restrictive temperature. However, they can still sense cyclic-AMP (cAMP) gradients and polymerise actin up-gradient, but form only abortive pseudopodia, which cannot expand. They also relay a cAMP signal normally, suggesting that cAMP is released by a non-exocytic mechanism. To investigate why SecA is required for motility, we examined membrane trafficking in the mutant. Plasma membrane circulation is rapidly inhibited at the restrictive temperature and the cells acquire a prominent vesicle. Organelle-specific markers show that this is an undischarged contractile vacuole, and we found the cells are correspondingly osmo-sensitive. Electron microscopy shows that many smaller vesicles, probably originating from the plasma membrane, also accumulate at the restrictive temperature. Consistent with this, the surface area of mutant cells shrinks. We suggest that SecA mutant cells cannot move at the restrictive temperature because their block in exocytosis results in a net uptake of plasma membrane, reducing its area, and so restricting pseudopodial expansion. This demonstrates the importance of proper surface area regulation in cell movement.


Asunto(s)
Movimiento Celular , Dictyostelium/fisiología , Proteínas Mutantes/metabolismo , Ósmosis , Proteínas Protozoarias/metabolismo , Actinas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Movimiento Celular/genética , AMP Cíclico/metabolismo , Exocitosis/genética , Microscopía Electrónica , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas Mutantes/genética , Transporte de Proteínas/genética , Proteínas Protozoarias/genética , Seudópodos/genética , Temperatura
7.
Curr Biol ; 27(19): 2951-2962.e5, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28943089

RESUMEN

Caveolae introduce flask-shaped convolutions into the plasma membrane and help to protect the plasma membrane from damage under stretch forces. The protein components that form the bulb of caveolae are increasingly well characterized, but less is known about the contribution of proteins that localize to the constricted neck. Here we make extensive use of multiple CRISPR/Cas9-generated gene knockout and knockin cell lines to investigate the role of Eps15 Homology Domain (EHD) proteins at the neck of caveolae. We show that EHD1, EHD2, and EHD4 are recruited to caveolae. Recruitment of the other EHDs increases markedly when EHD2, which has been previously detected at caveolae, is absent. Construction of knockout cell lines lacking EHDs 1, 2, and 4 confirms this apparent functional redundancy. Two striking sets of phenotypes are observed in EHD1,2,4 knockout cells: (1) the characteristic clustering of caveolae into higher-order assemblies is absent; and (2) when the EHD1,2,4 knockout cells are subjected to prolonged cycles of stretch forces, caveolae are destabilized and the plasma membrane is prone to rupture. Our data identify the first molecular components that act to cluster caveolae into a membrane ultrastructure with the potential to extend stretch-buffering capacity and support a revised model for the function of EHDs at the caveolar neck.


Asunto(s)
Proteínas Portadoras/genética , Caveolas/fisiología , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Proteínas de Transporte Vesicular/genética , Animales , Fenómenos Biomecánicos , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Ratones , Células 3T3 NIH , Proteínas Nucleares/metabolismo , Estrés Mecánico , Proteínas de Transporte Vesicular/metabolismo
8.
Sci Rep ; 6: 38863, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27958322

RESUMEN

Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition.


Asunto(s)
Drosophila/genética , Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Neuronas/ultraestructura , Animales , Animales Modificados Genéticamente , Axones/ultraestructura , Dendritas/ultraestructura , Drosophila/ultraestructura , Aumento de la Imagen , Rayos X
9.
Nat Commun ; 6: 6867, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25897946

RESUMEN

Caveolae have long been implicated in endocytosis. Recent data question this link, and in the absence of specific cargoes the potential cellular function of caveolar endocytosis remains unclear. Here we develop new tools, including doubly genome-edited cell lines, to assay the subcellular dynamics of caveolae using tagged proteins expressed at endogenous levels. We find that around 5% of the cellular pool of caveolae is present on dynamic endosomes, and is delivered to endosomes in a clathrin-independent manner. Furthermore, we show that caveolae are indeed likely to bud directly from the plasma membrane. Using a genetically encoded tag for electron microscopy and ratiometric light microscopy, we go on to show that bulk membrane proteins are depleted within caveolae. Although caveolae are likely to account for only a small proportion of total endocytosis, cells lacking caveolae show fundamentally altered patterns of membrane traffic when loaded with excess glycosphingolipid. Altogether, these observations support the hypothesis that caveolar endocytosis is specialized for transport of membrane lipid.


Asunto(s)
Caveolina 1/metabolismo , Glicoesfingolípidos/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Caveolina 1/genética , Membrana Celular , Regulación de la Expresión Génica/fisiología , Genoma , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Proteínas Luminiscentes , Proteínas de la Membrana/genética , Ratones , Células 3T3 NIH , Fotoblanqueo , Proteínas Recombinantes , Proteína Fluorescente Roja
10.
J Cell Biol ; 211(1): 53-61, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26459598

RESUMEN

Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1(-/-) mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo.


Asunto(s)
Gasto Cardíaco , Caveolas/fisiología , Células Endoteliales/fisiología , Animales , Fenómenos Biomecánicos , Caveolina 1/genética , Caveolina 1/metabolismo , Membrana Celular/fisiología , Células Cultivadas , Endocitosis , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Lancet Infect Dis ; 4(11): 697-703, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15522682

RESUMEN

The 2003 outbreak of severe acute respiratory syndrome took the province of Ontario, Canada, by surprise. A lack of planning and the decentralised nature of the health-care system meant that disruptive control measures had to be put in place to control the outbreak. Several of the control strategies were difficult to implement and resulted in considerable confusion, fear, and costs. We discuss these difficulties and offer suggestions for improving outbreak planning.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Brotes de Enfermedades/prevención & control , Servicio de Urgencia en Hospital/estadística & datos numéricos , Política de Salud , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/prevención & control , Canadá , Humanos , Ontario/epidemiología
12.
Nat Cell Biol ; 15(8): 937-47, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23873150

RESUMEN

Actin networks drive many essential cellular processes, including cell migration, cytokinesis and tissue morphogenesis. However, how cells organize and regulate dynamic actin networks that consist of long, unbranched actin filaments is only poorly understood. This study in mouse oocytes reveals that cells can use vesicles as adaptable, motorized network nodes to regulate the dynamics and density of intracellular actin networks. In particular, Rab11a-positive vesicles drive the network dynamics in a myosin-Vb-dependent manner, and modulate the network density by sequestering and clustering the network's actin nucleators. We also report a simple way by which networks of different densities can be generated, namely by adjusting the number and volume of vesicles in the cell. This vesicle-based mechanism of actin network modulation is essential for asymmetric positioning of the meiotic spindle in mouse oocytes, a vital step in the development of a fertilizable egg in mammals.


Asunto(s)
Actinas/metabolismo , Vesículas Citoplasmáticas/metabolismo , Huso Acromático/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Microscopía Confocal , Modelos Biológicos , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Oocitos/citología , Oocitos/metabolismo
13.
Nat Commun ; 4: 1831, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23652019

RESUMEN

Caveolae are abundant in endothelial cells and are thought to have important roles in endothelial cell biology. The cavin proteins are key components of caveolae, and are expressed at varied amounts in different tissues. Here we use knockout mice to determine the roles of cavins 2 and 3 in caveolar morphogenesis in vivo. Deletion of cavin 2 causes loss of endothelial caveolae in lung and adipose tissue, but has no effect on the abundance of endothelial caveolae in heart and other tissues. Changes in the morphology of endothelium in cavin 2 null mice correlate with changes in caveolar abundance. Cavin 3 is not required for making caveolae in the tissues examined. Cavin 2 determines the size of cavin complexes, and acts to shape caveolae. Cavin 1, however, is essential for normal oligomerization of caveolin 1. Our data reveal that endothelial caveolae are heterogeneous, and identify cavin 2 as a determinant of this heterogeneity.


Asunto(s)
Caveolas/metabolismo , Endotelio/crecimiento & desarrollo , Endotelio/metabolismo , Eliminación de Gen , Proteínas de la Membrana/genética , Morfogénesis , Especificidad de Órganos , Animales , Caveolina 1/química , Caveolina 1/metabolismo , Forma de la Célula , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Endotelio/ultraestructura , Pulmón/citología , Pulmón/metabolismo , Pulmón/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peso Molecular , Complejos Multiproteicos/metabolismo , Miocardio/metabolismo , Miocardio/ultraestructura , Estructura Cuaternaria de Proteína , Proteínas de Unión al ARN
14.
Nat Cell Biol ; 11(7): 807-14, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19525939

RESUMEN

Caveolae are plasma membrane invaginations with a characteristic flask-shaped morphology. They function in diverse cellular processes, including endocytosis. The mechanism by which caveolae are generated is not fully understood, but both caveolin proteins and PTRF (polymerase I and transcript release factor, also known as cavin) are important. Here we show that loss of SDPR (serum deprivation protein response) causes loss of caveolae. SDPR binds directly to PTRF and recruits PTRF to caveolar membranes. Overexpression of SDPR, unlike PTRF, induces deformation of caveolae and extensive tubulation of the plasma membrane. The B-subunit of Shiga toxin (STB) also induces membrane tubulation and these membrane tubes also originate from caveolae. STB colocalizes extensively with both SDPR and caveolin 1. Loss of caveolae reduces the propensity of STB to induce membrane tubulation. We conclude that SDPR is a membrane-curvature-inducing component of caveolae, and that STB-induced membrane tubulation is facilitated by caveolae.


Asunto(s)
Proteínas Portadoras/fisiología , Caveolas/metabolismo , Membrana Celular/metabolismo , Animales , Western Blotting , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caveolas/ultraestructura , Caveolina 1/metabolismo , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Técnica del Anticuerpo Fluorescente Indirecta , Células HeLa , Humanos , Inmunoprecipitación , Microscopía , Microscopía Electrónica de Transmisión , Proteínas de Unión a Fosfato , Unión Proteica/genética , Unión Proteica/fisiología , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , ARN Interferente Pequeño , Proteínas de Unión al ARN/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda