Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Am J Respir Crit Care Med ; 209(12): 1441-1452, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354065

RESUMEN

Rationale: It is unknown whether preventing overdistention or collapse is more important when titrating positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS). Objectives: To compare PEEP targeting minimal overdistention or minimal collapse or using a compromise between collapse and overdistention in a randomized trial and to assess the impact on respiratory mechanics, gas exchange, inflammation, and hemodynamics. Methods: In a porcine model of ARDS, lung collapse and overdistention were estimated using electrical impedance tomography during a decremental PEEP titration. Pigs were randomized to three groups and ventilated for 12 hours: PEEP set at ⩽3% of overdistention (low overdistention), ⩽3% of collapse (low collapse), and the crossing point of collapse and overdistention. Measurements and Main Results: Thirty-six pigs (12 per group) were included. Median (interquartile range) values of PEEP were 7 (6-8), 11 (10-11), and 15 (12-16) cm H2O in the three groups (P < 0.001). With low overdistension, 6 (50%) pigs died, whereas survival was 100% in both other groups. Cause of death was hemodynamic in nature, with high transpulmonary vascular gradient and high epinephrine requirements. Compared with the other groups, pigs surviving with low overdistension had worse respiratory mechanics and gas exchange during the entire protocol. Minimal differences existed between crossing-point and low-collapse animals in physiological parameters, but postmortem alveolar density was more homogeneous in the crossing-point group. Inflammatory markers were not significantly different. Conclusions: PEEP to minimize overdistention resulted in high mortality in an animal model of ARDS. Minimizing collapse or choosing a compromise between collapse and overdistention may result in less lung injury, with potential benefits of the compromise approach.


Asunto(s)
Modelos Animales de Enfermedad , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria , Animales , Porcinos , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/fisiopatología , Atelectasia Pulmonar/terapia , Atelectasia Pulmonar/fisiopatología , Distribución Aleatoria , Mecánica Respiratoria/fisiología , Hemodinámica/fisiología , Femenino , Intercambio Gaseoso Pulmonar/fisiología
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L589-L595, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375568

RESUMEN

Cold-stored (CS) platelets are once again being reintroduced for clinical use. Transfused CS platelets offer benefits over room temperature-stored (RTS) platelets such as increased hemostatic effects and prolongation of shelf-life. Despite these advantages little is known about their association with transfusion-related acute lung injury (TRALI). TRALI is associated with prolonged storage of RTS platelets and has a mortality of >15%. Determining the safety of CS platelets is important considering their proposed use in TRALI-vulnerable populations with inflammation such as surgical patients or patients with trauma. Donor platelet-derived ceramide causes TRALI, whereas donor platelet sphingosine-1-phosphate (S1P) is barrier protective. Females have higher plasma levels of S1P than males. Cold temperatures increase S1P levels in cells. Therefore, we hypothesized that female (donors or recipients) and/or CS platelets would decrease TRALI. To test this, we compared how male and female donor and recipient allogeneic platelet transfusions of CS (4°C) versus RTS (23°C) platelets stored for 5 days influence murine TRALI. Transfusion of CS platelets significantly reduced recipient lung tissue wet-to-dry ratios, bronchoalveolar lavage total protein, lung tissue myeloperoxidase enzyme activity, histological lung injury scores, and increased plasma sphingosine-1-phosphate (S1P) levels compared with RTS platelet transfusions. Female as opposed to male recipients had less TRALI and higher plasma S1P levels. Female donor mouse platelets had higher S1P levels than males. Mouse and human CS platelets had increased S1P levels compared with RTS platelets. Higher recipient plasma S1P levels appear protective considering females, and males receiving platelets from females or male CS platelets had less TRALI.NEW & NOTEWORTHY Transfusion-related acute lung injury (TRALI) though relatively rare represents a severe lung injury. The sphingolipid sphingosine-1-phosphate (S1P) regulates the severity of platelet-mediated TRALI. Female platelet transfusion recipient plasmas or stored platelets from female donors have higher S1P levels than males, which reduces TRALI. Cold storage of murine platelets preserves platelet-S1P, which reduces TRALI in platelet-transfused recipients.


Asunto(s)
Conservación de la Sangre , Lisofosfolípidos , Esfingosina , Esfingosina/análogos & derivados , Lesión Pulmonar Aguda Postransfusional , Lisofosfolípidos/sangre , Lisofosfolípidos/metabolismo , Esfingosina/sangre , Animales , Femenino , Masculino , Ratones , Conservación de la Sangre/métodos , Lesión Pulmonar Aguda Postransfusional/sangre , Transfusión de Plaquetas , Ratones Endogámicos C57BL , Plaquetas/metabolismo , Humanos , Lesión Pulmonar Aguda/sangre , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda