Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Hum Mol Genet ; 32(12): 2093-2102, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36928917

RESUMEN

BACKGROUND: To understand the shared genetic basis between colorectal cancer (CRC) and other cancers and identify potential pleiotropic loci for compensating the missing genetic heritability of CRC. METHODS: We conducted a systematic genome-wide pleiotropy scan to appraise associations between cancer-related genetic variants and CRC risk among European populations. Single nucleotide polymorphism (SNP)-set analysis was performed using data from the UK Biobank and the Study of Colorectal Cancer in Scotland (10 039 CRC cases and 30 277 controls) to evaluate the overlapped genetic regions for susceptibility of CRC and other cancers. The variant-level pleiotropic associations between CRC and other cancers were examined by CRC genome-wide association study meta-analysis and the pleiotropic analysis under composite null hypothesis (PLACO) pleiotropy test. Gene-based, co-expression and pathway enrichment analyses were performed to explore potential shared biological pathways. The interaction between novel genetic variants and common environmental factors was further examined for their effects on CRC. RESULTS: Genome-wide pleiotropic analysis identified three novel SNPs (rs2230469, rs9277378 and rs143190905) and three mapped genes (PIP4K2A, HLA-DPB1 and RTEL1) to be associated with CRC. These genetic variants were significant expressions quantitative trait loci in colon tissue, influencing the expression of their mapped genes. Significant interactions of PIP4K2A and HLA-DPB1 with environmental factors, including smoking and alcohol drinking, were observed. All mapped genes and their co-expressed genes were significantly enriched in pathways involved in carcinogenesis. CONCLUSION: Our findings provide an important insight into the shared genetic basis between CRC and other cancers. We revealed several novel CRC susceptibility loci to help understand the genetic architecture of CRC.


Asunto(s)
Neoplasias Colorrectales , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Colorrectales/genética , Riesgo , Sitios Genéticos , Consumo de Bebidas Alcohólicas , Sitios de Carácter Cuantitativo/genética , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad , Fosfotransferasas (Aceptor de Grupo Alcohol)
2.
Biochem Biophys Res Commun ; 739: 150585, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39186870

RESUMEN

Congenital cataract is one of the most common causes of childhood blindness, typically resulting from genetic mutations. Over a hundred gene mutations associated with congenital cataract have been identified, with approximately half occurring in the Crystallin genes. In this study, we identified a novel γA-crystallin pathogenic mutation (c. 29G > C, p. Arg10Pro (R10P)), from a four-generation Chinese family with congenital cataract, and investigated its potential molecular mechanisms underlying congenital cataracts. We compared the protein structure and stability of purified the wild type (WT) and R10P under physiological conditions and environmental stresses (UV irradiation, pH imbalance, heat shock, and chemical denaturation) using spectroscopic experiments, SEC analysis, and the UNcle protein analysis system. The results demonstrate that γA-R10P has no significant impact on the structure of γA-crystallin on normal condition. However, it is more sensitive to UV irradiation at high concentrations and prone to aggregation at high temperatures. Therefore, our study reveals the crucial role of the conserved site mutation R10P in maintaining protein structure and stability, providing new insights into the mechanisms of cataract formation.

3.
J Med Virol ; 96(1): e29374, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197487

RESUMEN

We aimed to assess the epidemiological characteristics of respiratory syncytial virus (RSV) infection in Chinese children at different phases of the coronavirus disease 2019 (COVID-19) pandemic, that is, before, during the pandemic and after easing of restrictive measures. We included 123 623 patients aged 0-18 years with respiratory infection symptoms who were suspected with RSV infection from January 1, 2019 to June 30, 2023 in Hangzhou Children's Hospital. Clinical information and RSV test result were extracted from the laboratory information system. We calculated the positive rate of RSV detection by age groups, gender, seasons, types of patients and phases of COVID-19 pandemic. Nonlinear associations between age and risk of RSV infection in three phases of pandemic were assessed by restricted cubic spline regression models. Among 123 623 patients, 3875 (3.13%) were tested as positive. The highest positive rate was observed in children aged 0-28 days (i.e., 12.28%). RSV infection was most prevalent in winter (6.04%), and followed by autumn (2.52%). Although there is no statistical significance regarding the positive rate at three phases of the pandemic, we observed that the rate was lowest during the pandemic and increased after easing the measures in certain age groups (p < 0.05), which was consisted with results from the nonlinear regression analyses. In addition, regression analyses suggested that the age range of children susceptible to RSV got wider, that is, 0-3.5 years, after easing all restrictive measures compared with that before (i.e., 0-3 years) and during the pandemic (i.e., 0-1 year). Based on our findings, we called for attention from health professionals and caregivers on the new epidemiological characteristics of RSV infection in the post-pandemic era after easing the restrictive measures.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Niño , Preescolar , Humanos , Lactante , Recién Nacido , China/epidemiología , COVID-19/epidemiología , Pandemias , Infecciones por Virus Sincitial Respiratorio/epidemiología , Pueblos del Este de Asia
4.
Pharmacol Res ; 208: 107392, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233057

RESUMEN

AIMS: Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM) without curative interventions currently. Huperzine A (Hup A), a natural alkaloid, has demonstrated significant hypoglycemic and anti-inflammatory effects. We aim to investigate the protective effects of Hup A on DN and explore the underlying mechanisms METHODS: We applied STZ induced diabetic rats as DN model and leveraged combination analysis of the transcriptome, metabolome, microbiome, and network pharmacology (NP). The total effect of Hup A on DN was detected (i.e. urine protein, renal tissue structure) and the differential genes were further verified at the level of diabetic patients, db/db mice and cells. Clinical data and small interfering RNA (siRNA)-Apoe were adopted. RESULTS: Hup A alleviated kidney injury in DN rats. Transcriptomics data and Western blot indicated that the improvement in DN was primarily associated with Apoe and Apoc2. Additionally, metabolomics data demonstrated that DN-induced lipid metabolism disruption was regulated by Hup A, potentially involving sphingosine. Hup A also enriched microbial diversity and ameliorated DN-induced microbiota imbalance. Spearman's correlation analysis demonstrated significant associations among the transcriptome, metabolome, and microbiome. Apoe level was positively correlated with clinical biomarkers in DN patients. Si-Apoe also played protective role in podocytes. NP analysis also suggested that Hup A may treat DN by modulating lipid metabolism, microbial homeostasis, and apoptosis, further validating our findings. CONCLUSIONS: Collectively, we provide the first evidence of the therapeutic effect of Hup A on DN, indicating that Hup A is a potential drug for the prevention and treatment of DN.

5.
Cancer Sci ; 114(9): 3595-3607, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37438885

RESUMEN

Endometrial cancer (EC) is a common malignant tumor that lacks any therapeutic target and, in many cases, recurrence is the leading ca use of morbidity and mortality in women. Widely known EC has a strongly positive correlation with abnormal lipid metabolism. Squalene epoxidase (SQLE), a crucial enzyme in the cholesterol synthesis pathway regulating lipid metabolic processes has been found to be associated with various cancers in recent years. Here, we focused on studying the role of SQLE in EC. Our study revealed that SQLE expression level was upregulated significantly in EC tissues. In vitro experiments showed that SQLE overexpression significantly promoted the proliferation, and inhibited cell apoptosis of EC cells, whereas SQLE knockdown or use of terbinafine showed the opposite results. Furthermore, we found out that the promotional effect of SQLE on the proliferation of EC cells might be achieved by activating the PI3K/AKT pathway. In vivo, studies confirmed that the knockdown of SQLE or terbinafine can observably inhibit tumor growth in nude mice. These results indicate that SQLE may promote the progression of EC by activating the PI3K/AKT pathway. Moreover, SQLE is a potential target for EC treatment and its inhibitor, terbinafine, has the potential to become a targeted drug for EC treatment.


Asunto(s)
Neoplasias Endometriales , Proteínas Proto-Oncogénicas c-akt , Humanos , Animales , Ratones , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Terbinafina/farmacología , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Transducción de Señal , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Proliferación Celular , Línea Celular Tumoral
6.
Eur J Clin Invest ; 53(7): e13978, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36856027

RESUMEN

BACKGROUND: Nephrotic syndrome is common in children and adults worldwide, and steroid-sensitive nephrotic syndrome (SSNS) accounts for 80%. Aberrant metabolism involvement in early SSNS is sparsely studied, and its pathogenesis remains unclear. Therefore, the goal of this study was to investigate the changes in initiated SSNS patients-related metabolites through serum and urine metabolomics and discover the novel potential metabolites and metabolic pathways. METHODS: Serum samples (27 SSNS and 56 controls) and urine samples (17 SSNS and 24 controls) were collected. Meanwhile, the non-targeted analyses were performed by ultra-high-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS) to determine the changes in SSNS. We applied the causal inference model, the DoWhy model, to assess the causal effects of several selected metabolites. An ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to validate hits (D-mannitol, dulcitol, D-sorbitol, XMP, NADPH, NAD, bilirubin, and α-KG-like) in 41 SSNS and 43 controls. In addition, the metabolic pathways were explored. RESULTS: Compared to urine, the metabolism analysis of serum samples was more clearly discriminated at SSNS. 194 differential serum metabolites and five metabolic pathways were obtained in the SSNS group. Eight differential metabolites were identified by establishing the diagnostic model for SSNS, and four variables had a positive causal effect. After validation by targeted MS, except XMP, others have similar trends like the untargeted metabolic analysis. CONCLUSION: With untargeted metabolomics analysis and further targeted quantitative analysis, we found seven metabolites may be new biomarkers for risk prediction and early diagnosis for SSNS.


Asunto(s)
Síndrome Nefrótico , Adulto , Humanos , Niño , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Biomarcadores
7.
Cell Commun Signal ; 21(1): 324, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957688

RESUMEN

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) is characterized by unrelieved proteinuria after an initial 4-8 weeks of glucocorticoid therapy. Genes in podocytes play an important role in causing SRNS. OBJECTIVE: This study aimed to report a pathogenic mutation in SRNS patients and investigate its effects on podocytes, as well as the pathogenic mechanism. METHODS: We screened out a novel mutation by using whole-exon sequencing in the SRNS cohort and verified it via Sanger sequencing. Conservative analysis and bioinformatic analysis were used to predict the pathogenicity of the mutation. In vitro, stable podocyte cell lines were constructed to detect the effect of the mutation on the function of the podocyte. Moreover, an in vivo mouse model of podocyte ANLN gene knockout (ANLNpodKO) was used to confirm clinical manifestations. Transcriptome analysis was performed to identify differential gene expression and related signaling pathways. RESULTS: ANLN E841K was screened from three unrelated families. ANLN E841K occurred in the functional domain and was predicted to be harmful. The pathological type of A-II-1 renal biopsy was minimal change disease, and the expression of ANLN was decreased. Cells in the mutation group showed disordered cytoskeleton, faster cell migration, decreased adhesion, increased endocytosis, slower proliferation, increased apoptosis, and weakened interaction with CD2 association protein. ANLNpodKO mice exhibited more obvious proteinuria, more severe mesangial proliferation, glomerular atrophy, foot process fusion, and increased tissue apoptosis levels than ANLNflox/flox mice after tail vein injection of adriamycin. Upregulated differentially expressed genes in cells of the mutation group were mainly enriched in the PI3K-AKT pathway. CONCLUSION: The novel mutation known as ANLN E841K affected the function of the ANLN protein by activating the PI3K/AKT/mTOR/apoptosis pathway, thus resulting in structural and functional changes in podocytes. Our study indicated that ANLN played a vital role in maintaining the normal function of podocytes. Video Abstract.


Asunto(s)
Proteínas de Microfilamentos , Síndrome Nefrótico , Podocitos , Animales , Humanos , Ratones , Mutación/genética , Síndrome Nefrótico/genética , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Podocitos/patología , Proteinuria , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Microfilamentos/genética
8.
Neurobiol Dis ; 170: 105749, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35568100

RESUMEN

Increasing genetic and biochemical evidence has broadened our view of the pathomechanisms that lead to Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases with similar symptoms and causes. Stress granules are dynamic cytosolic storage hubs for mRNAs in response to stress exposures, that are evolutionarily conserved cytoplasmic RNA granules in somatic cells. A lot of previous studies have shown that the impaired stress granules are crucial events in SMA/ALS pathogenesis. In this review, we described the key stress granules related RNA binding proteins (SMN, TDP-43, and FUS) involved in SMA/ALS, summarized the reported mutations in these RNA binding proteins involved in SMA/ALS pathogenesis, and discussed the mechanisms through which stress granules dynamics participate in the diseases. Meanwhile, we described the applications and limitation of current therapies targeting SMA/ALS. We futher proposed the promising targets on stress granules in the future therapeutic interventions of SMA/ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Muscular Espinal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Mutación , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Gránulos de Estrés
9.
Nature ; 523(7562): 607-11, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26200341

RESUMEN

The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.


Asunto(s)
Catarata/tratamiento farmacológico , Catarata/metabolismo , Lanosterol/farmacología , Lanosterol/uso terapéutico , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/tratamiento farmacológico , Adulto , Secuencia de Aminoácidos , Amiloide/química , Amiloide/efectos de los fármacos , Amiloide/metabolismo , Amiloide/ultraestructura , Animales , Secuencia de Bases , Catarata/congénito , Catarata/genética , Catarata/patología , Línea Celular , Niño , Cristalinas/química , Cristalinas/genética , Cristalinas/metabolismo , Cristalinas/ultraestructura , Perros , Femenino , Humanos , Lanosterol/administración & dosificación , Cristalino/efectos de los fármacos , Cristalino/metabolismo , Cristalino/patología , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Linaje , Agregación Patológica de Proteínas/patología
10.
Nanomedicine ; 34: 102381, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33771705

RESUMEN

The Gram-positive bacterium Staphylococcus aureus (MRSA) and the Gram-negative bacillus Escherichia coli (E. coli) can be commonly found in diabetic foot ulcers. However, the multi-drug resistant pathogenic bacteria infection is often difficult to eradicate by the conventional antibiotics and easy to spread which can lead to complications such as gangrene or sepsis. In this work, in order to pull through the low cell wall adhesion capability of typical antibacterial Ag nanoparticles, we fabricated biomimic virus-like mesoporous silica coated Ag nanocubes with gentamicin loading, and then the core-shell nanostructure was entrapped in the FDA approved hydrogel dressing. Interestingly, the Ag nanocubes with virus-like mesoporous silica coating are capable of effectively adsorbing on the rigid cell wall of both E. coli and MRSA. The intracellular H2S in natural bacterial environment can induce generation of small Ag nanospheres, which are the ideal antibacterial nanoagents. Combined with the gentamicin delivery, the pathogenic bacteria in diabetic wound can be completely eradicated by our dressing to improve the wound healing procedure. This virus-like core-shell nanostructure sheds light for the future wound healing dressing design to promote the clinical applications on antibacterial eradication.


Asunto(s)
Adhesión Bacteriana , Pie Diabético/microbiología , Nanopartículas del Metal/química , Dióxido de Silicio/química , Plata/química , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pie Diabético/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Escherichia coli/fisiología , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/fisiología
11.
Cell Mol Biol (Noisy-le-grand) ; 66(5): 15-19, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33040806

RESUMEN

The purpose of this study was to evaluate the co-prescription efficacy of esomeprazole and flupenthixol/melitracen relative to that of solitary esomeprazole on erosive gastritis complicated with negative feelings. 140 erosive gastritis patients complicated with negative feelings enrolled in the present study. Seventy cases in the control group took esomeprazole, and 70 cases in the observation group received esomeprazole plus flupenthixol/Melitracen, both for 4 weeks. We gastroscopically checked the clinical symptoms, mucosal erosion, PGE2 and MDA levels in gastric mucosa, anxiety, depression, and recurrence before and after treatment in the groups. After treatment, the observation group had lower scores of clinical symptoms, mucosal erosions, Hamilton Depression Rating Scale (HAMD), and Hamilton Depression Rating Scale (HAMA) than the control group (p<0.05); as well, the observation group showed higher PGE2 and lower MDA levels than the control group (p<0.05); during six months of follow-up (100% follow-up rate), 16 and 34 recurrent cases occurred, respectively, in the observation and control groups (p<0.05).  Co-prescription of esomeprazole and flupenthixol/melitracen improved the clinical symptoms and mucosal erosions, relieved negative feelings and reduced the recurrence rate. The efficacy of the co-prescription is higher than that of the solitary prescription.


Asunto(s)
Antracenos/uso terapéutico , Emociones/efectos de los fármacos , Esomeprazol/efectos adversos , Esomeprazol/uso terapéutico , Flupentixol/uso terapéutico , Gastritis/tratamiento farmacológico , Anciano , Ansiedad/inducido químicamente , Terapia Combinada/métodos , Depresión/inducido químicamente , Femenino , Mucosa Gástrica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Recurrencia , Úlcera Gástrica/inducido químicamente , Resultado del Tratamiento
12.
Nanomedicine ; 28: 102198, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32334101

RESUMEN

Failure of intraoperative detection, early minimal lesion and microscopic residual tumor margins elimination causes metastatic diffusion and lethal recurrence. However, during surgical process, surgeons can only rely largely on palpation and visual examination. Intraoperative bioimaging with the aid of the second near-infrared fluorescent (NIR II FL) light has entered the surgical excision area to bridge the gap of preoperative bioimaging and intraoperative resection. Here, we demonstrate that the follicle-stimulating hormone peptide (FSHP) engineered NIR II downshifting nanoparticles (DSNPs@FSHP) selectively undergo efficient ovarian tumor targeting property. Owing to the special biocompatibility of nanoprobes, this strategy provided rapid body clearance and efficient tumor targeting with significantly tumor to background (T/B) ratio enhanced for surgical excision. Based on these, this strategy can successfully empower the detection and surgical removal for both ovarian tumor lesions and ovarian tumor margins by NIR II FL bioimaging.


Asunto(s)
Hormona Folículo Estimulante/química , Nanopartículas/química , Imagen Óptica/métodos , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/cirugía , Espectroscopía Infrarroja Corta/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos
13.
Biochem Biophys Res Commun ; 506(4): 868-873, 2018 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-30392915

RESUMEN

Cataract, a crystallin aggregation disease, is the leading cause of human blindness worldwide. Surgery is the only established treatment of cataracts and no anti-cataract drugs are available thus far. Recently lanosterol and 25-hydroxycholesterol have been reported to redissolve crystallin aggregates and partially restore lens transparency in animals. However, the efficacies of these two compounds have not been quantitatively studied ex vivo using patient tissues. In this research, we developed a quantitative assay applicable to efficacy validations and mechanistic studies by a protocol to isolate protein aggregates from the surgically removed cataractous human lens. Our results showed that both compounds were effective for human cataractous samples with EC50 values at ten micromolar level. The efficacies of both compounds strongly depended on cataract severity. Lanosterol and 25-hydroxycholesterol were two mechanistically different lead compounds of anti-cataract drug design.


Asunto(s)
Catarata/patología , Hidroxicolesteroles/farmacología , Lanosterol/farmacología , Cristalino/metabolismo , Agregación Patológica de Proteínas/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Fluorescencia , Humanos , Cristalino/patología , Masculino , Persona de Mediana Edad
16.
ChemMedChem ; 19(7): e202300374, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37990850

RESUMEN

For unique surface plasmon absorption and fluorescence characteristics, gold nanorods have been developed and widely employed in the biomedical field. However, limitations still exist due their low specific surface area, instability and tendency agglomerate in cytoplasm. Mesoporous silica materials have been broadly applied in field of catalysts, adsorbents, nanoreactors, and drug carriers due to its unique mesoporous structure, highly comparative surface area, good stability and biocompatibility. Therefore, coating gold nanorods with a dendritic mesopore channels can effectively prevent particle agglomeration, while increasing the specific surface area and drug loading efficiency. This review discusses the advancements of GNR@MSN in synthetic process, bio-imaging technique and tumor therapy. Additionally, the further application of GNR@MSN in imaging-guided treatment modalities is explored, while its promising superior application prospect is highlighted. Finally, the issues related to in vivo studies are critically examined for facilitating the transition of this promising nanoplatform into clinical trials.


Asunto(s)
Nanotubos , Neoplasias , Humanos , Oro/química , Dióxido de Silicio/química , Nanotubos/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
17.
Fundam Res ; 4(2): 394-400, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38933503

RESUMEN

Protein misfolding and aggregation are crucial pathogenic factors for cataracts, which are the leading cause of visual impairment worldwide. α-crystallin, as a small molecular chaperone, is involved in preventing protein misfolding and maintaining lens transparency. The chaperone activity of α-crystallin depends on its oligomeric state. Our previous work identified a natural compound, celastrol, which could regulate the oligomeric state of αB-crystallin. In this work, based on the UNcle and SEC analysis, we found that celastrol induced αB-crystallin to form large oligomers. Large oligomer formation enhanced the chaperone activity of αB-crystallin and prevented aggregation of the cataract-causing mutant ßA3-G91del. The interactions between αB-crystallin and celastrol were detected by the FRET (Fluorescence Resonance Energy Transfer) technique, and verified by molecular docking. At least 9 binding patterns were recognized, and some binding sites covered the groove structure of αB-crystallin. Interestingly, αB-R120G, a cataract-causing mutation located at the groove structure, and celastrol can decrease the aggregates of αB-R120G. Overall, our results suggested celastrol not only promoted the formation of large αB-crystallin oligomers, which enhanced its chaperone activity, but also bound to the groove structure of its α-crystallin domain to maintain its structural stability. Celastrol might serve as a chemical and pharmacological chaperone for cataract treatment.

18.
Int J Biol Macromol ; 277(Pt 2): 134292, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084439

RESUMEN

Congenital cataracts, a prevalent cause of blindness in children, are associated with protein aggregation. γD-crystallin, essential for sustaining lens transparency, exists as a monomer and exhibits excellent structural stability. In our cohort, we identified a nonsense mutation (c.451_452insGACT, p.Y151X) in the CRYGD gene. To explore the effect of truncation mutations on the structure of γD-crystallin, we examined the Y151X and T160RfsX8 mutations, both located in the Greek key motif 4 at the cellular and protein level in this study. Both truncation mutations induced protein misfolding and resulted in the formation of insoluble aggregates when overexpressed in HLE B3 and HEK 293T cells. Moreover, heat, UV irradiation, and oxidative stress increased the proportion of aggregates of mutants in the cells. We next purified γD-crystallin to estimate its structural changes. Truncation mutations led to conformational disruption and a concomitant decrease in protein solubility. Molecular dynamics simulations further demonstrated that partial deletion of the conserved domain within the Greek key motif 4 markedly compromised the overall stability of the protein structure. Finally, co-expression of α-crystallins facilitated the proper folding of truncated mutants and mitigated protein aggregation. In summary, the structural integrity of the Greek key motif 4 in γD-crystallin is crucial for overall structural stability.


Asunto(s)
Catarata , Agregado de Proteínas , Estabilidad Proteica , gamma-Cristalinas , Humanos , gamma-Cristalinas/genética , gamma-Cristalinas/química , gamma-Cristalinas/metabolismo , Catarata/genética , Catarata/metabolismo , Células HEK293 , Mutación , Simulación de Dinámica Molecular , Pliegue de Proteína , Conformación Proteica , Solubilidad , Agregación Patológica de Proteínas/genética
19.
Front Nutr ; 11: 1411374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171106

RESUMEN

Childhood obesity presents a serious health concern associated with gut microbiota alterations. Dietary interventions targeting the gut microbiota have emerged as promising strategies for managing obesity in children. This study aimed to elucidate the impact of stachyose (STS) supplementation on the gut microbiota composition and metabolic processes in obese children. Fecal samples were collected from 40 obese children (20 boys and 20 girls) aged between 6 and 15 and in vitro fermentation was conducted with or without the addition of STS, respectively, followed by 16S rRNA amplicon sequencing and analysis of short-chain fatty acids (SCFAs) and gases. Notably, our results revealed that STS supplementation led to significant alterations in gut microbiota composition, including an increase in the abundance of beneficial bacteria such as Bifidobacterium and Faecalibacterium, and a decrease in harmful bacteria including Escherichia-Shigella, Parabacteroides, Eggerthella, and Flavonifractor. Moreover, STS supplementation resulted in changes in SCFAs production, with significant increases in acetate levels and reductions in propionate and propionate, while simultaneously reducing the generation of gases such as H2S, H2, and NH3. The Area Under the Curve (AUC)-Random Forest algorithm and PICRUSt 2 were employed to identify valuable biomarkers and predict associations between the gut microbiota, metabolites, and metabolic pathways. The results not only contribute to the elucidation of STS's modulatory effects on gut microbiota but also underscore its potential in shaping metabolic activities within the gastrointestinal environment. Furthermore, our study underscores the significance of personalized nutrition interventions, particularly utilizing STS supplementation, in the management of childhood obesity through targeted modulation of gut microbial ecology and metabolic function.

20.
MedComm (2020) ; 5(2): e476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38405060

RESUMEN

Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda