Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Am Chem Soc ; 146(1): 833-848, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38113458

RESUMEN

The high-performance Y6-based nonfullerene acceptors (NFAs) feature a C-shaped A-DA'D-A-type molecular architecture with a central electron-deficient thiadiazole (Tz) A' unit. In this work, we designed and synthesized a new A-D-A-type NFA, termed CB16, having a C-shaped ortho-benzodipyrrole-based skeleton of Y6 but with the Tz unit eliminated. When processed with nonhalogenated xylene without using any additives, the binary PM6:CB16 devices display a remarkable power conversion efficiency (PCE) of 18.32% with a high open-circuit voltage (Voc) of 0.92 V, surpassing the performance of the corresponding Y6-based devices. In contrast, similarly synthesized SB16, featuring an S-shaped para-benzodipyrrole-based skeleton, yields a low PCE of 0.15% due to the strong side-chain aggregation of SB16. The C-shaped A-DNBND-A skeleton in CB16 and the Y6-series NFAs constitutes the essential structural foundation for achieving exceptional device performance. The central Tz moiety or other A' units can be employed to finely adjust intermolecular interactions. The single-crystal X-ray structure reveals that ortho-benzodipyrrole-embedded A-DNBND-A plays an important role in the formation of a 3D elliptical network packing for efficient charge transport. Solution structures of the PM6:NFAs detected by small- and wide-angle X-ray scattering (SWAXS) indicate that removing the Tz unit in the C-shaped skeleton could reduce the self-packing of CB16, thereby enhancing the complexing and networking with PM6 in the spin-coating solution and the subsequent device film. Elucidating the structure-property-performance relationships of A-DA'D-A-type NFAs in this work paves the way for the future development of structurally simplified A-D-A-type NFAs.

2.
ACS Macro Lett ; 12(4): 468-474, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36971302

RESUMEN

Conjugated polymers (CPs) have been actively utilized as photocatalysts for hydrogen evolution due to their easy synthetic tunability to endow specific functionalities, including visible-light absorption, higher-lying LUMO energy for proton reduction, and sufficient photochemical stability. Enhancing interfacial surface and compatibility of hydrophobic CPs with hydrophilic water is the central focus to improve the hydrogen evolution rate (HER). Although a number of successful approaches have been developed in recent years, tedious chemical modifications or post-treatment of CPs make reproducibility of the materials difficult. In this work, a solution processable PBDB-T polymer is directly deposited on a glass substrate to form a thin film that is immersed in an aqueous solution to photochemically catalyze H2 generation. The PBDB-T thin film showed a much higher hydrogen evolution rate (HER) than the typical method of using PBDB-T suspended solids due to the enhanced interfacial area with a more suitable solid-state morphology. When the thickness of the thin film is reduced to dramatically improve the utilization of the photocatalytic material, the 0.1 mg-based PBDB-T thin film exhibited an unprecedentedly high HER of 120.90 mmol h-1 g-1.

3.
Org Lett ; 23(5): 1692-1697, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33621105

RESUMEN

We discovered a unique synthetic route to construct 2H-pyran-containing tetracyclic dithienocyclopentapyran (DTCP) and dibenzocyclopentapyran (DBCP) architectures. The synthesis involves an acid-induced dehydration cyclization followed by a [1,5] hydride-shift isomerization to form a cyclopentanone moiety which was converted to the pyran-embedded tetracyclic products by a CuI-catalyzed intramolecular C-O bond formation in good yield. DTCP was used as a building block to prepare an acceptor-donor-acceptor (A-D-A) type n-type material DTCP-BC leading to a solar cell efficiency of 9.32%.

4.
Org Lett ; 22(6): 2318-2322, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32118452

RESUMEN

Pd(II)-catalyzed dehydrogenative Heck olefination of selenophenes with a broad olefinic substrate scope and high functional group tolerance is demonstrated. Carbonyl-substituted and phenyl-substituted olefins with electron-donating (D) and electron-accepting (A) groups can be regioselectively installed at C2 of the selenophene. The 2-olefinated selenophenes can subsequently undergo a second oxidative olefination to rapidly produce a new class of symmetrical D-π-D or unsymmetrical D-π-A 2,5-diolefinated selenophene materials.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda