Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.109
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Chem Rev ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924776

RESUMEN

Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.

2.
Nature ; 583(7818): 752-759, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728242

RESUMEN

Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited1,2. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders.


Asunto(s)
Metilación de ADN , Epigenoma , Feto/embriología , Feto/metabolismo , Animales , Animales Recién Nacidos , Cromatina/genética , Cromatina/metabolismo , Enfermedad/genética , Regulación hacia Abajo , Elementos de Facilitación Genéticos/genética , Represión Epigenética , Femenino , Silenciador del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis Espacio-Temporal
3.
Nature ; 583(7818): 744-751, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728240

RESUMEN

The Encyclopedia of DNA Elements (ENCODE) project has established a genomic resource for mammalian development, profiling a diverse panel of mouse tissues at 8 developmental stages from 10.5 days after conception until birth, including transcriptomes, methylomes and chromatin states. Here we systematically examined the state and accessibility of chromatin in the developing mouse fetus. In total we performed 1,128 chromatin immunoprecipitation with sequencing (ChIP-seq) assays for histone modifications and 132 assay for transposase-accessible chromatin using sequencing (ATAC-seq) assays for chromatin accessibility across 72 distinct tissue-stages. We used integrative analysis to develop a unified set of chromatin state annotations, infer the identities of dynamic enhancers and key transcriptional regulators, and characterize the relationship between chromatin state and accessibility during developmental gene regulation. We also leveraged these data to link enhancers to putative target genes and demonstrate tissue-specific enrichments of sequence variants associated with disease in humans. The mouse ENCODE data sets provide a compendium of resources for biomedical researchers and achieve, to our knowledge, the most comprehensive view of chromatin dynamics during mammalian fetal development to date.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Conjuntos de Datos como Asunto , Desarrollo Fetal/genética , Histonas/metabolismo , Anotación de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Cromatina/química , Secuenciación de Inmunoprecipitación de Cromatina , Enfermedad/genética , Elementos de Facilitación Genéticos/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Variación Genética , Histonas/química , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos/genética , Reproducibilidad de los Resultados , Transposasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(17): e2216247120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068253

RESUMEN

In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Núcleo Subtalámico , Ratones , Animales , Núcleo Entopeduncular , Tálamo , Trastornos Parkinsonianos/terapia , Receptores Histamínicos
7.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38168840

RESUMEN

Gestational diabetes mellitus (GDM) is a common complication of pregnancy, which has significant adverse effects on both the mother and fetus. The incidence of GDM is increasing globally, and early diagnosis is critical for timely treatment and reducing the risk of poor pregnancy outcomes. GDM is usually diagnosed and detected after 24 weeks of gestation, while complications due to GDM can occur much earlier. Copy number variations (CNVs) can be a possible biomarker for GDM diagnosis and screening in the early gestation stage. In this study, we proposed a machine-learning method to screen GDM in the early stage of gestation using cell-free DNA (cfDNA) sequencing data from maternal plasma. Five thousand and eighty-five patients from north regions of Mainland China, including 1942 GDM, were recruited. A non-overlapping sliding window method was applied for CNV coverage screening on low-coverage (~0.2×) sequencing data. The CNV coverage was fed to a convolutional neural network with attention architecture for the binary classification. The model achieved a classification accuracy of 88.14%, precision of 84.07%, recall of 93.04%, F1-score of 88.33% and AUC of 96.49%. The model identified 2190 genes associated with GDM, including DEFA1, DEFA3 and DEFB1. The enriched gene ontology (GO) terms and KEGG pathways showed that many identified genes are associated with diabetes-related pathways. Our study demonstrates the feasibility of using cfDNA sequencing data and machine-learning methods for early diagnosis of GDM, which may aid in early intervention and prevention of adverse pregnancy outcomes.


Asunto(s)
Ácidos Nucleicos Libres de Células , Aprendizaje Profundo , Diabetes Gestacional , beta-Defensinas , Femenino , Embarazo , Humanos , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Variaciones en el Número de Copia de ADN , Resultado del Embarazo , Ácidos Nucleicos Libres de Células/genética
8.
Nat Mater ; 23(5): 695-702, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38287128

RESUMEN

π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki-Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor-donor, donor-acceptor and acceptor-acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.

9.
Acc Chem Res ; 57(6): 981-991, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38431881

RESUMEN

ConspectusSince the first bilayer-structured organic solar cells (OSCs) in 1986, fullerenes and their derivatives have dominated the landscape for two decades due to their unique properties. In recent years, the breakthrough in nonfullerene acceptors (NFAs) was mainly attributed to the development of fused-ring electron acceptors (FREAs), whose photovoltaic performance surpassed that of fullerene derivatives. Through the unremitting efforts of the whole community, the power conversion efficiencies (PCEs) have surpassed 19% in FREA-based OSCs. However, FREAs generally suffered from complex synthetic approaches and high product costs, which hindered large-scale production. Therefore, many researchers are seeking a new type of NFA to achieve cost-effective, highly efficient OSCs.In collaboration with Marks and Facchetti in 2012, Huang et al. (Huang, H. J. Am. Chem. Soc. 2012, 134, 10966-10973, 10.1021/ja303401s) proposed the concept of "noncovalent conformational locks" (NoCLs). In the following years, our group has been focusing on the theoretical and experimental exploration of NoCLs, revealing their fundamental nature, formulating a simple descriptor for quantifying their strength, and employing this approach to achieve high-performance organic/polymeric semiconductors for optoelectronics, such as OSCs, thin-film transistors, room-temperature phosphorescence, and photodetectors. The NoCLs strategy has been proven to be a simple and effective approach for enhancing molecular rigidity and planarity, thus improving the charge transport mobilities of organic/polymeric semiconductors, attributed to reduced reorganization energy and suppressed nonradiative decay.In 2018, Chen et al. (Li, S. Adv. Mater. 2018, 30, 1705208, 10.1002/adma.201705208) reported the first example of nonfused-ring electron acceptors (NFREAs) with intramolecular noncovalent F···H interactions. The NoCLs strategy is essential in NFREAs, as it simplifies the conjugated structures while maintaining high coplanarity comparable to that of FREAs. Due to their simple structures and concise synthesis routes, NFREAs show great potential for achieving cost-effective and highly efficient OSCs. In this Account, we provide an overview of our efforts in developing NFREAs with the NoCLs strategy. We begin with a discussion on the distinct features of NFREAs compared with FREAs, and the structural simplification from FREAs to NFREAs to completely NFREAs. Next, we examine several selected typical examples of NFREAs with remarkable photovoltaic performance, aiming to provide an in-depth exploration of the molecular design principle and structure-property-performance relationships. Then, we discuss how to achieve a balance among efficiency, stability, and cost through a two-in-one strategy of polymerized NFREAs (PNFREAs). Finally, we offer our views on the current challenges and future prospects of NFREAs. We hope this Account will trigger intensive research interest in this field, thus propelling OSCs into a new stage.

10.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38365269

RESUMEN

The aim of this paper is to investigate dynamical functional disturbance in central executive network in minimal hepatic encephalopathy and determine its association with metabolic disorder and cognitive impairment. Data of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging were obtained from 27 cirrhotic patients without minimal hepatic encephalopathy, 20 minimal hepatic encephalopathy patients, and 24 healthy controls. Central executive network was identified utilizing seed-based correlation approach. Dynamic functional connectivity across central executive network was calculated using sliding-window approach. Functional states were estimated by K-means clustering. Right dorsolateral prefrontal cortex metabolite ratios (i.e. glutamate and glutamine complex/total creatine, myo-inositol / total creatine, and choline / total creatine) were determined. Neurocognitive performance was determined by psychometric hepatic encephalopathy scores. Minimal hepatic encephalopathy patients had decreased myo-inositol / total creatine and choline / total creatine and increased glutamate and glutamine complex / total creatine in right dorsolateral prefrontal cortex (all P ≤ 0.020); decreased static functional connectivity between bilateral dorsolateral prefrontal cortex and between right dorsolateral prefrontal cortex and lateral-inferior temporal cortex (P ≤ 0.001); increased frequency and mean dwell time in state-1 (P ≤ 0.001), which exhibited weakest functional connectivity. Central executive network dynamic functional indices were significantly correlated with right dorsolateral prefrontal cortex metabolic indices and psychometric hepatic encephalopathy scores. Right dorsolateral prefrontal cortex myo-inositol / total creatine and mean dwell time in state-1 yielded best potential for diagnosing minimal hepatic encephalopathy. Dynamic functional disturbance in central executive network may contribute to neurocognitive impairment and could be correlated with metabolic disorder.


Asunto(s)
Encefalopatía Hepática , Humanos , Encefalopatía Hepática/complicaciones , Encefalopatía Hepática/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Glutamina/metabolismo , Creatina/metabolismo , Cirrosis Hepática/complicaciones , Cirrosis Hepática/metabolismo , Ácido Glutámico/metabolismo , Inositol/metabolismo , Colina/metabolismo , Encéfalo
11.
Nano Lett ; 24(15): 4462-4470, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574275

RESUMEN

Micro/nanofiber-based face masks are recommended as personal protective equipment (PPE) against particulate matter (PM), especially PM0.3. Ensuring thermal comfort in daily use face masks is essential in many situations. Here, radiative thermal management is introduced into face masks to elevate the user comfort. An interlayered poly(lactic acid) (PLA) micro/nanofibrous filter effectively captures PM0.3 (99.69%) with minimal pressure drop (49 Pa). Thermal regulation is accomplished by controlling the mid-infrared (MIR) emissivity of the face mask's outer surface. Cooling face masks feature cotton nonwovens with high MIR emissivity (90.7%) for heat dissipation, while warming face masks utilize perforated Al/PE films with minimal MIR emissivity (10.7%) for warmth retention. Skin temperature measurements indicate that the skin covered by the cooling face mask could be 1.1 °C lower than that covered by the 3M face mask, while the skin covered by the warming face mask could be 1.3 °C higher than that covered by the 3M face mask.

12.
Nano Lett ; 24(4): 1197-1204, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38227967

RESUMEN

Electrocatalytic reduction of nitrate to ammonia (NO3RR) is gaining attention for low carbon emissions and environmental protection. However, low ammonia production rate and poor selectivity have remained major challenges in this multi-proton coupling process. Herein, we report a facile strategy toward a novel Fe-based hybrid structure composed of Fe single atoms and Fe3C atomic clusters that demonstrates outstanding performance for synergistic electrocatalytic NO3RR. By operando synchrotron Fourier transform infrared spectroscopy and theoretical computation, we clarify that Fe single atoms serve as the active site for NO3RR, while Fe3C clusters facilitate H2O dissociation to provide protons (*H) for continued hydrogenation reactions. As a result, the Fe-based electrocatalyst exhibits ammonia Faradaic efficiency of nearly 100%, with a corresponding production rate of 24768 µg h-1 cm-2 at -0.4 V vs RHE, exceeding most reported metal-based catalysts. This research provides valuable guidance toward multi-step reactions.

13.
Gut ; 73(4): 682-690, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38123994

RESUMEN

OBJECTIVE: This randomised trial aimed to address whether endoscopic variceal ligation (EVL) or propranolol (PPL) is more effective at preventing initial oesophageal variceal bleeding (EVB) in patients with hepatocellular carcinoma (HCC). DESIGN: Patients with HCC and medium-to-large oesophageal varices (EVs) but without previous EVB were randomised to receive EVL (every 3-4 weeks until variceal eradication) or PPL (up to 320 mg daily) at a 1:1 ratio. Long-term follow-up data on EVB, other upper gastrointestinal bleeding (UGIB), non-bleeding liver decompensation, overall survival (OS) and adverse events (AEs) were analysed using competing risk regression. RESULTS: Between June 2011 and April 2021, 144 patients were randomised to receive EVL (n=72) or PPL (n=72). In the EVL group, 7 patients experienced EVB, and 30 died; in the PPL group, 19 patients had EVB, and 40 died. The EVL group had a lower cumulative incidence of EVB (Gray's test, p=0.009) than its counterpart, with no mortality difference (Gray's test, p=0.085). For patients with Barcelona Clinic Liver Cancer (BCLC) stage A/B, EVL was better than PPL in reducing EVB (p<0.001) and mortality (p=0.003). For patients beyond BCLC stage B, between-group outcomes were similar. Other UGIB, non-bleeding liver decompensation and AEs did not differ between groups. A competing risk regression model confirmed the prognostic value of EVL. CONCLUSION: EVL is superior to PPL in preventing initial EVB in patients with HCC. The benefits of EVL on EVB and OS may be limited to patients with BCLC stage A/B and not to those with BCLC stage C/D. TRIAL REGISTRATION NUMBER: NCT01970748.


Asunto(s)
Carcinoma Hepatocelular , Várices Esofágicas y Gástricas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/cirugía , Várices Esofágicas y Gástricas/complicaciones , Várices Esofágicas y Gástricas/cirugía , Hemorragia Gastrointestinal/etiología , Hemorragia Gastrointestinal/prevención & control , Ligadura/efectos adversos , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/cirugía , Prevención Primaria , Propranolol/uso terapéutico
14.
Circulation ; 148(7): 589-606, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37203562

RESUMEN

BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.


Asunto(s)
Disección Aórtica , Músculo Liso Vascular , Animales , Humanos , Ratones , Disección Aórtica/genética , Sistema de Señalización de MAP Quinasas , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fosforilación
15.
Immunology ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829009

RESUMEN

Overexpression of T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells has been observed in smokers. However, whether and how galectin-9 (Gal-9)/TIM-3 signal between T-regulatory cells (Tregs) and type 17 helper (Th17) cells contributes to tobacco smoke-induced airway inflammation remains unclear. Here, we aimed to explore the role of the Gal-9/TIM-3 signal between Tregs and Th17 cells during chronic tobacco smoke exposure. Tregs phenotype and the expression of TIM-3 on CD4+ T cells were detected in a mouse model of experimental emphysema. The role of TIM-3 in CD4+ T cells was explored in a HAVCR2-/- mouse model and in mice that received recombinant anti-TIM3. The crosstalk between Gal-9 and Tim-3 was evaluated by coculture Tregs with effector CD4+ T cells. We also invested the expression of Gal-9 in Tregs in patients with COPD. Our study revealed that chronic tobacco smoke exposure significantly reduces the frequency of Tregs in the lungs of mice and remarkably shapes the heterogeneity of Tregs by downregulating the expression of Gal-9. We observed a pro-inflammatory but restrained phenotypic transition of CD4+ T cells after tobacco smoke exposure, which was maintained by TIM-3. The restrained phenotype of CD4+ T cells was perturbed when TIM-3 was deleted or neutralised. Tregs from the lungs of mice with emphysema displayed a blunt ability to inhibit the differentiation and proliferation of Th17 cells. The inhibitory function of Tregs was partially restored by using recombinant Gal-9. The interaction between Gal-9 and TIM-3 inhibits the differentiation of Th17 cells and promotes apoptosis of CD4+ T cells, possibly by interfering with the expression of retinoic acid receptor-related orphan receptor gamma t. The expression of Gal-9 in Tregs was reduced in patients with COPD, which was associated with Th17 response and lung function. These findings present a new paradigm that impairment of Gal-9/Tim-3 crosstalk between Tregs and Th17 cells during chronic tobacco smoke exposure promotes tobacco smoke-induced airway/lung inflammation.

16.
Kidney Int ; 105(1): 115-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37914087

RESUMEN

Arterial calcification is a hallmark of vascular pathology in the elderly and in individuals with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs), after attaining a senescent phenotype, are implicated in the calcifying process. However, the underlying mechanism remains to be elucidated. Here, we reveal an aberrant upregulation of transcriptional factor GATA6 in the calcified aortas of humans, mice with CKD and mice subjected to vitamin D3 injection. Knockdown of GATA6, via recombinant adeno-associated virus carrying GATA6 shRNA, inhibited the development of arterial calcification in mice with CKD. Further gain- and loss-of function experiments in vitro verified the contribution of GATA6 in osteogenic differentiation of VSMCs. Samples of human aorta exhibited a positive relationship between age and GATA6 expression and GATA6 was also elevated in the aortas of old as compared to young mice. Calcified aortas displayed senescent features with VSMCs undergoing premature senescence, blunted by GATA6 downregulation. Notably, abnormal induction of GATA6 in senescent and calcified aortas was rescued in Sirtuin 6 (SIRT6)-transgenic mice, a well-established longevity mouse model. Suppression of GATA6 accounted for the favorable effect of SIRT6 on VSMCs senescence prevention. Mechanistically, SIRT6 inhibited the transcription of GATA6 by deacetylation and increased degradation of transcription factor Nkx2.5. Moreover, GATA6 was induced by DNA damage stress during arterial calcification and subsequently impeded the Ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair process, leading to accelerated VSMCs senescence and osteogenic differentiation. Thus, GATA6 is a novel regulator in VSMCs senescence. Our findings provide novel insight in arterial calcification and a potential new target for intervention.


Asunto(s)
Insuficiencia Renal Crónica , Sirtuinas , Calcificación Vascular , Humanos , Ratones , Animales , Anciano , Músculo Liso Vascular , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Factor de Transcripción GATA6/farmacología , Osteogénesis , Células Cultivadas , Insuficiencia Renal Crónica/patología , Daño del ADN , Senescencia Celular/genética , Envejecimiento/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo
17.
Br J Cancer ; 130(7): 1109-1118, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341511

RESUMEN

BACKGROUND: 13-15% of breast cancer/BC patients diagnosed as pathological complete response/pCR after neoadjuvant systemic therapy/NST suffer from recurrence. This study aims to estimate the rationality of organoid forming potential/OFP for more accurate evaluation of NST efficacy. METHODS: OFPs of post-NST residual disease/RD were checked and compared with clinical approaches to estimate the recurrence risk. The phenotypes of organoids were classified via HE staining and ER, PR, HER2, Ki67 and CD133 immuno-labeling. The active growing organoids were subjected to drug sensitivity tests. RESULTS: Of 62 post-NST BC specimens, 24 were classified as OFP-I with long-term active organoid growth, 19 as OFP-II with stable organoid growth within 3 weeks, and 19 as OFP-III without organoid formation. Residual tumors were overall correlated with OFP grades (P < 0.001), while 3 of the 18 patients (16.67%) pathologically diagnosed as tumor-free (ypT0N0M0) showed tumor derived-organoid formation. The disease-free survival/DFS of OFP-I cases was worse than other two groups (Log-rank P < 0.05). Organoids of OFP-I/-II groups well maintained the biological features of their parental tumors and were resistant to the drugs used in NST. CONCLUSIONS: The OFP would be a complementary parameter to improve the evaluation accuracy of NST efficacy of breast cancers.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Terapia Neoadyuvante , Supervivencia sin Enfermedad , Receptor ErbB-2 , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
18.
Anal Chem ; 96(19): 7577-7584, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696338

RESUMEN

Owing to the separation of field-effect transistor (FET) devices from sensing environments, extended-gate FET (EGFET) biosensor features high stability and low cost. Herein, a highly sensitive EGFET biosensor based on a GaN micropillar array and polycrystalline layer (GMP) was fabricated, which was prepared by using simple one-step low-temperature MOCVD growth. In order to improve the sensitivity and detection limit of EGFET biosensor, the surface area and the electrical conductivity of extended-gate electrode can be increased by the micropillar array and the polycrystalline layer, respectively. The designed GMP-EGFET biosensor was modified with l-cysteine and applied for Hg2+ detection with a low limit of detection (LOD) of 1 ng/L, a high sensitivity of -16.3 mV/lg(µg/L) and a wide linear range (1 ng/L-24.5 µg/L). In addition, the detection of Hg2+ in human urine was realized with an LOD of 10 ng/L, which was more than 30 times lower than that of reported sensors. To our knowledge, it is the first time that GMP was used as extended-gate of EGFET biosensor.


Asunto(s)
Técnicas Biosensibles , Límite de Detección , Mercurio , Humanos , Mercurio/orina , Mercurio/análisis , Transistores Electrónicos , Galio/química , Electrodos
19.
Anal Chem ; 96(1): 301-308, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38102984

RESUMEN

Developing new strategies to construct sensor arrays that can effectively distinguish multiple natural components with similar structures in mixtures is an exceptionally challenging task. Here, we propose a new multilocus distance-modulated indicator displacement assay (IDA) strategy for constructing a sensor array, incorporating machine learning optimization to identify polyphenols. An 8-element array, comprising two fluorophores and their six dynamic covalent complexes (C1-C6) formed by pairing two fluorophores with three distinct distance-regulated quenchers, has been constructed. Polyphenols with diverse spatial arrangements and combinatorial forms compete with the fluorophores by forming pseudocycles with quenchers within the complexes, leading to varying degrees of fluorescence recovery. The array accurately and effectively distinguished four tea polyphenols and 16 tea varieties, thereby demonstrating the broad applicability of the multilocus distance-modulated IDA array in detecting polyhydroxy foods and natural medicines.


Asunto(s)
Polifenoles , , Espectrometría de Fluorescencia , Aprendizaje Automático
20.
BMC Plant Biol ; 24(1): 432, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773389

RESUMEN

The VIM (belonged to E3 ubiquitin ligase) gene family is crucial for plant growth, development, and stress responses, yet their role in salt stress remains unclear. We analyzed phylogenetic relationships, chromosomal localization, conserved motifs, gene structure, cis-acting elements, and gene expression patterns of the VIM gene family in four cotton varieties. Our findings reveal 29, 29, 17, and 14 members in Gossypium hirsutum (G.hirsutum), Gossypium barbadense (G.barbadense), Gossypium arboreum (G.arboreum), and Gossypium raimondii (G. raimondii), respectively, indicating the maturity and evolution of this gene family. motifs among GhVIMs genes were observed, along with the presence of stress-responsive, hormone-responsive, and growth-related elements in their promoter regions. Gene expression analysis showed varying patterns and tissue specificity of GhVIMs genes under abiotic stress. Silencing GhVIM28 via virus-induced gene silencing revealed its role as a salt-tolerant negative regulator. This work reveals a mechanism by which the VIM gene family in response to salt stress in cotton, identifying a potential negative regulator, GhVIM28, which could be targeted for enhancing salt tolerance in cotton. The objective of this study was to explore the evolutionary relationship of the VIM gene family and its potential function in salt stress tolerance, and provide important genetic resources for salt tolerance breeding of cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Salino , Gossypium/genética , Gossypium/fisiología , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Genes de Plantas , Tolerancia a la Sal/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda