Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Biol Toxicol ; 40(1): 38, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789868

RESUMEN

Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.


Asunto(s)
Apoptosis , Proteínas Portadoras , Rutina , Animales , Humanos , Masculino , Ratones , Apoptosis/efectos de los fármacos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Rutina/farmacología
2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(5): 544-557, 2023 Oct 12.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-37899395

RESUMEN

OBJECTIVES: To investigate the effect of borneol on cutaneous toxicity of gilteritinib and to explore possible compounds that can intervene with the cutaneous toxicity. METHODS: C57BL/6J male mice were given gilteritinib by continuous gavage for 28 d and the damage to keratinocytes in the skin tissues was observed with hematoxylin and eosin (HE) staining, TUNEL assay and immunohistochemistry. Human keratinocytes HaCaT were treated with gilteritinib, and cell death and morphological changes were examined by SRB staining and microscopy; apoptosis of HaCaT cells was examined by Western blotting, flow cytometry with propidium iodide/AnnexinⅤ double staining and immunofluorescence; the accumulation of cellular reactive oxygen species (ROS) was examined by flow cytometry with DCFH-DA. Compounds that can effectively intervene the cutaneous toxicity of gilteritinib were screened from a natural compound library using SRB method, and the intervention effect of borneol on gilteritinib cutaneous toxicity was further investigated in HaCaT cells and C57BL/6J male mice. RESULTS: In vivo studies showed pathological changes in the skin with apoptosis of keratinocytes in the stratum spinosum and stratum granulosum in the modeling group. Invitro studies showed apoptosis of HaCaT cells, significant up-regulation of cleaved poly (ADP-ribose) polymerase (c-PARP) and gamma-H2A histone family member X (γ-H2AX) levels, and increased accumulation of ROS in gilteritinib-modeled skin keratinocytes compared with controls. Screening of the natural compound library revealed that borneol showed excellent intervention effects on the death of HaCaT cells. In vitro, cell apoptosis was significantly reduced in the borneol+gilteritinib group compared to the gilteritinib control group. The levels of c-PARP, γ-H2AX and ROS in cells were significantly decreased. In vivo, borneol alleviated gilteritinib-induced skin pathological changes and skin cell apoptosis in mice. CONCLUSIONS: Gilteritinib induces keratinocytes apoptosis by causing intracellular ROS accumulation, resulting in cutaneous toxicity. Borneol can ameliorate the cutaneous toxicity of gilteritinib by reducing the accumulation of ROS and apoptosis of keratinocytes in the skin tissue.


Asunto(s)
Apoptosis , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Masculino , Humanos , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratones Endogámicos C57BL , Poli(ADP-Ribosa) Polimerasas/metabolismo
3.
Biomol Ther (Seoul) ; 32(5): 647-657, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38871446

RESUMEN

Gefitinib is the well-tolerated first-line treatment of non-small cell lung cancer. As it need for analgesics during oncology treatment, particularly in the context ofthe coronavirus disease, where patients are more susceptible to contract high fever and sore throat. This has increased the likelihood of taking both gefitinib and antipyretic analgesic acetaminophen (APAP). Given that gefitinib and APAP overdose can predispose patients to liver injury or even acute liver failure, there is a risk of severe hepatotoxicity when these two drugs are used concomitantly. However, little is known regarding their safety at therapeutic doses. This study simulated the administration of gefitinib and APAP at clinically relevant doses in an animal model and confirmed that gefitinib in combination with APAP exhibited additional hepatotoxicity. We found that gefitinib plus APAP significantly exacerbated cell death, whereas each drug by itself had little or minor effect on hepatocyte survival. Mechanistically, combination of gefitinib and APAP induces hepatocyte death via the apoptotic pathway obviously. Reactive oxygen species (ROS) generation and DNA damage accumulation are involved in hepatocyte apoptosis. Gefitinib plus APAP also promotes the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated the antioxidant factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), by inhibiting p62 expression. Taken together, this study revealed the potential ROS-mediated apoptosis-dependent hepatotoxicity effect of the combination of gefitinib and APAP, in which the p62/Keap1/Nrf2 signaling pathway participates and plays an important regulatory role.

4.
Toxicol Lett ; 397: 163-173, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754640

RESUMEN

Lenvatinib is a multi-target inhibitor that exerts anti-tumor effects by inhibiting angiogenesis and is now commonly used as a first-line treatment for hepatocellular carcinoma. However, with the widespread use of lenvatinib, the problem of serious and fatal hepatotoxicity has become increasingly prominent. Currently, the mechanism behind this toxicity is not yet understood, and as a result, there is a lack of safe and effective intervention strategies with minimal side effects. Here, we established the model of lenvatinib-induced liver injury in vivo and in vitro and found that lenvatinib caused hepatotoxicity by inducing apoptosis. Further mechanistic studies in cellular models revealed that lenvatinib upregulated death receptor signaling pathway, which activated the downstream effector Caspase-8, and ultimately led to apoptosis. Meanwhile, lenvatinib-induced apoptosis was associated with ROS generation and DNA damage. In addition, after screening marketed drugs and natural products in combination with cellular modeling, we identified a potential co-administered drug, dabrafenib, which could alleviate lenvatinib-induced hepatotoxicity. Further mechanistic studies revealed that dabrafenib attenuated lenvatinib-induced hepatotoxicity by inhibiting the activation of the death receptor signaling pathway. Subsequently, cancer cell proliferation assays confirmed that dabrafenib did not antagonize the antitumor effects of lenvatinib. In conclusion, our results validate that apoptosis caused by the death receptor signaling pathway is the key cause of lenvatinib-induced hepatotoxicity, and dabrafenib alleviates lenvatinib-induced hepatotoxicity by inhibiting this pathway.


Asunto(s)
Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas , Imidazoles , Oximas , Compuestos de Fenilurea , Quinolinas , Transducción de Señal , Quinolinas/farmacología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Oximas/farmacología , Oximas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Humanos , Apoptosis/efectos de los fármacos , Imidazoles/farmacología , Ratones , Masculino , Receptores de Muerte Celular/metabolismo , Antineoplásicos/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Células Hep G2
5.
Adv Sci (Weinh) ; 10(26): e2302002, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452432

RESUMEN

Nephrotoxicity has become prominent due to the increase in the clinical use of nilotinib, a second-generation BCR-ABL1 inhibitor in the first-line treatment of Philadelphia chromosome-positive chronic myeloid leukemia. To date, the mechanism of nilotinib nephrotoxicity is still unknown, leading to a lack of clinical intervention strategies. Here, it is found that nilotinib could induce glomerular atrophy, renal tubular degeneration, and kidney fibrosis in an animal model. Mechanistically, nilotinib induces intrinsic apoptosis by specifically reducing the level of BCL2 like 1 (Bcl-XL) in both vascular endothelial cells and renal tubular epithelial cells, as well as in vivo. It is confirmed that chloroquine (CQ) intervenes with nilotinib-induced apoptosis and improves mitochondrial integrity, reactive oxygen species accumulation, and DNA damage by reversing the decreased Bcl-XL. The intervention effect is dependent on the alleviation of the nilotinib-induced reduction in ubiquitin specific peptidase 13 (USP13) and does not rely on autophagy inhibition. Additionally, it is found that USP13 abrogates cell apoptosis by preventing excessive ubiquitin-proteasome degradation of Bcl-XL. In conclusion, the research reveals the molecular mechanism of nilotinib's nephrotoxicity, highlighting USP13 as an important regulator of Bcl-XL stability in determining cell fate, and provides CQ analogs as a clinical intervention strategy for nilotinib's nephrotoxicity.


Asunto(s)
Cloroquina , Células Endoteliales , Animales , Cloroquina/toxicidad , Apoptosis , Pirimidinas/farmacología , Proteasas Ubiquitina-Específicas
6.
Sci Rep ; 12(1): 1964, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121784

RESUMEN

With evidence-based measures, COVID-19 can be effectively controlled by advanced data analysis and prediction. However, while valuable insights are available, there is a shortage of robust and rigorous research on what factors shape COVID-19 transmissions at the city cluster level. Therefore, to bridge the research gap, we adopted a data-driven hierarchical modeling approach to identify the most influential factors in shaping COVID-19 transmissions across different Chinese cities and clusters. The data used in this study are from Chinese officials, and hierarchical modeling conclusions drawn from the analysis are systematic, multifaceted, and comprehensive. To further improve research rigor, the study utilizes SPSS, Python and RStudio to conduct multiple linear regression and polynomial best subset regression (PBSR) analysis for the hierarchical modeling. The regression model utilizes the magnitude of various relative factors in nine Chinese city clusters, including 45 cities at a different level of clusters, to examine these aspects from the city cluster scale, exploring the correlation between various factors of the cities. These initial 12 factors are comprised of 'Urban population ratio', 'Retail sales of consumer goods', 'Number of tourists', 'Tourism Income', 'Ratio of the elderly population (> 60 year old) in this city', 'population density', 'Mobility scale (move in/inbound) during the spring festival', 'Ratio of Population and Health facilities', 'Jobless rate (%)', 'The straight-line distance from original epicenter Wuhan to this city', 'urban per capita GDP', and 'the prevalence of the COVID-19'. The study's results provide rigorously-tested and evidence-based insights on most instrumental factors that shape COVID-19 transmissions across cities and regions in China. Overall, the study findings found that per capita GDP and population mobility rates were the most affected factors in the prevalence of COVID-19 in a city, which could inform health experts and government officials to design and develop evidence-based and effective public health policies that could curb the spread of the COVID-19 pandemic.


Asunto(s)
COVID-19/epidemiología , Punto Alto de Contagio de Enfermedades , Población Urbana/estadística & datos numéricos , China , Ciudades/epidemiología , Humanos , Prevalencia , Análisis de Regresión
7.
Cancer Res ; 81(5): 1413-1425, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33402387

RESUMEN

Novel strategies to treat late-stage nasopharyngeal carcinoma that often develop resistance to chemotherapy remains an unmet clinical demand. In this study, we identify the multi-kinase inhibitor pacritinib as capable of resensitizing the response to paclitaxel in an acquired resistance model. Transcriptome analysis of paclitaxel-sensitive and -resistant cell lines, as well as chemorefractory clinical samples, identified S100A9 as the top candidate gene suppressed by pacritinib and whose overexpression was significantly associated with paclitaxel resistance and poor clinical outcome. Moreover, both paclitaxel-resistant nasopharyngeal carcinoma cells and relapsed/metastatic clinical samples exhibited increased IRAK1 phosphorylation and demonstrated that pacritinib could abolish the IRAK1 phosphorylation to suppress S100A9 expression. Functional studies in both in vitro and in vivo models showed that genetic or pharmacologic blockade of IRAK1 overcame the resistance to paclitaxel, and combined treatment of pacritinib with paclitaxel exhibited superior antitumor effect. Together, these findings demonstrate an important role for the IRAK1-S100A9 axis in mediating resistance to paclitaxel. Furthermore, targeting of IRAK1 by pacritinib may provide a novel therapeutic strategy to overcome chemoresistance in nasopharyngeal carcinoma. SIGNIFICANCE: Deregulation of the IRAK1-S100A9 axis correlates with poor prognosis, contributes to chemoresistance in nasopharyngeal carcinoma, and can be targeted by pacritinib to overcome chemoresistance in nasopharyngeal carcinoma.


Asunto(s)
Calgranulina B/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Paclitaxel/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Hidrocarburos Aromáticos con Puentes/farmacología , Calgranulina B/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Ratones Endogámicos BALB C , Terapia Molecular Dirigida , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/mortalidad , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/mortalidad , Pronóstico , Pirimidinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda