Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nat Immunol ; 18(10): 1128-1138, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846085

RESUMEN

The transcription factor RORγt regulates differentiation of the TH17 subset of helper T cells, thymic T cell development and lymph-node genesis. Although elimination of RORγt prevents TH17 cell-mediated experimental autoimmune encephalomyelitis (EAE), it also disrupts thymocyte development, which could lead to lethal thymic lymphoma. Here we identified a two-amino-acid substitution in RORγt (RORγtM) that 'preferentially' disrupted TH17 differentiation but not thymocyte development. Mice expressing RORγtM were resistant to EAE associated with defective TH17 differentiation but maintained normal thymocyte development and normal lymph-node genesis, except for Peyer's patches. RORγtM showed less ubiquitination at Lys69 that was selectively required for TH17 differentiation but not T cell development. This study will inform the development of treatments that selectively target TH17 cell-mediated autoimmunity but do not affect thymocyte development or induce lymphoma.


Asunto(s)
Sustitución de Aminoácidos , Diferenciación Celular/genética , Mutación , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Células Th17/citología , Células Th17/metabolismo , Timocitos/citología , Timocitos/metabolismo , Animales , Biomarcadores , Diferenciación Celular/inmunología , Análisis por Conglomerados , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunofenotipificación , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Ratones Noqueados , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células Th17/inmunología , Timocitos/inmunología , Ubiquitinación
2.
Pestic Biochem Physiol ; 198: 105711, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225069

RESUMEN

Severe infestations of American sloughgrass (Beckmannia syzigachne (Steud.) Fernald) in wheat fields throughout Anhui Province, China, pose a significant threat to local agricultural production. This study aims to evaluate the susceptibility of 37 B. syzigachne populations collected from diverse wheat fields in Anhui Province to three commonly used herbicides: fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon. Single-dose testing revealed that out of the 37 populations, 31, 26, and 11 populations had either evolved or were evolving resistance to fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon, respectively. Among them, 25 populations displayed concurrent resistance to both fenoxaprop-P-ethyl and mesosulfuron-ethyl, while eight exhibited resistance to all three tested herbicides. Whole-plant bioassays confirmed that approximately 84% of the fenoxaprop-P-ethyl-resistant populations manifested high-level resistance (resistance index (RI) ≥10); 62% of the mesosulfuron-ethyl-resistant populations and 82% of the isoproturon-resistant populations exhibited low- to moderate-level resistance (2 ≤ RI <10). Three distinct target-site mutations were identified in 27% of fenoxaprop-P-ethyl-resistant populations, with no known resistance mutations detected in the remaining herbicide-resistant populations. The inhibition of cytochrome P450s (P450s) and/or glutathione S-transferases (GSTs) substantially increased susceptibility in the majority of resistant populations lacking mutations at the herbicide target site. In conclusion, resistance to fenoxaprop-P-ethyl and mesosulfuron-ethyl was widespread in B. syzigachne within Anhui Province's wheat fields, while resistance to isoproturon was rapidly evolving due to its escalating usage. Target-site mutations were present in approximately one-third of fenoxaprop-P-ethyl-resistant populations, and alternative mechanisms involving P450s and/or GSTs could explain the resistance observed in most of the remaining populations.


Asunto(s)
Herbicidas , Oxazoles , Compuestos de Fenilurea , Propionatos , Triticum , Triticum/genética , Poaceae , China , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Acetil-CoA Carboxilasa/genética
3.
Pestic Biochem Physiol ; 202: 105946, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879333

RESUMEN

Eriochloa villosa (Thunb.) Kunth is a troublesome weed widely distributed in maize (Zea mays L.) fields in Northeast China. Many populations of E. villosa have evolved resistance to nicosulfuron herbicides, which inhibit acetolactate synthase (ALS). The objectives of this research were to confirm that E. villosa is resistant to nicosulfuron and to investigate the basis of nicosulfuron resistance. Whole-plant dose-response studies revealed that the R population had not developed a high level of cross-resistance and exhibited greater resistant (25.62-fold) to nicosulfuron than that of the S population and had not yet developed a high level of cross-resistance. An in vitro ALS activity assay demonstrated that the I50 of nicosulfuron was 6.87-fold greater in the R population than the S population. However, based on ALS gene sequencing, the target ALS gene in the R population did not contain mutations. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that ALS gene expression between the R and S populations was significantly different after nicosulfuron application, but no differences were observed in the gene copy number. After the cytochrome P450 inhibitor malathion or the GST inhibitor NBD-Cl was applied, the resistant E. villosa population exhibited increased sensitivity to nicosulfuron. Based on the activities of GSTs and P450s, the activities of the R population were greater than those of the S population after nicosulfuron application. This is the first report that the resistance of E. villosa to ALS inhibitors results from increased target gene expression and increased metabolism. These findings provide a theoretical foundation for the effective control of herbicide-resistant E. villosa.


Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Piridinas , Compuestos de Sulfonilurea , Compuestos de Sulfonilurea/farmacología , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Acetolactato Sintasa/antagonistas & inhibidores , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Piridinas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Poaceae/genética , Poaceae/efectos de los fármacos
4.
Pestic Biochem Physiol ; 197: 105650, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072525

RESUMEN

Wild oat (Avena fatua L.) is a common and problematic weed in wheat fields in China. In recent years, farmers found it increasingly difficult to control A. fatua using acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. The purpose of this study was to identify the molecular basis of clodinafop-propargyl resistance in A. fatua. In comparison to the S1496 population, whole dose response studies revealed that the R1623 and R1625 populations were 71.71- and 67.76-fold resistant to clodinafop-propargyl, respectively. The two resistant A. fatua populations displayed high resistance to fenoxaprop-p-ethyl (APP) and low resistance to clethodim (CHD) and pinoxaden (PPZ), but they were still sensitive to the ALS inhibitors mesosulfuron-methyl and pyroxsulam. An Ile-2041-Asn mutation was identified in both resistant individual plants. The copy number and relative expression of the ACCase gene in the resistant population were not significantly different from those in the S1496 population. Under the application of 2160 g ai ha -1 of clodinafop-propargyl, the fresh weight of the R1623 population was reduced to 74.9%; however, pretreatment with the application of the cytochrome P450 inhibitor malathion and the GST inhibitor NBD-Cl reduced the fresh weight to 50.91% and 47.16%, respectively, which proved the presence of metabolic resistance. This is the first report of an Ile-2041-Asn mutation and probable metabolic resistance in A. fatua, resulting in resistance to clodinafop-propargyl.


Asunto(s)
Avena , Herbicidas , Avena/genética , Poaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Mutación
5.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108267

RESUMEN

The green foxtail, Setaria viridis (L.) P. Beauv. (Poales: Poaceae), is a troublesome and widespread grass weed in China. The acetolactate synthase (ALS)-inhibiting herbicide nicosulfuron has been intensively used to manage S. viridis, and this has substantially increased the selection pressure. Here we confirmed a 35.8-fold resistance to nicosulfuron in an S. viridis population (R376 population) from China and characterized the resistance mechanism. Molecular analyses revealed an Asp-376-Glu mutation of the ALS gene in the R376 population. The participation of metabolic resistance in the R376 population was proved by cytochrome P450 monooxygenases (P450) inhibitor pre-treatment and metabolism experiments. To further elucidate the mechanism of metabolic resistance, eighteen genes that could be related to the metabolism of nicosulfuron were obtained bythe RNA sequencing. The results of quantitative real-time PCR validation indicated that three ATP-binding cassette (ABC) transporters (ABE2, ABC15, and ABC15-2), four P450 (C76C2, CYOS, C78A5, and C81Q32), and two UDP-glucosyltransferase (UGT) (UGT13248 and UGT73C3), and one glutathione S-transferases (GST) (GST3) were the major candidates that contributed to metabolic nicosulfuron resistance in S. viridis. However, the specific role of these ten genes in metabolic resistance requires more research. Collectively, ALS gene mutations and enhanced metabolism may be responsible for the resistance of R376 to nicosulfuron.


Asunto(s)
Herbicidas , Setaria (Planta) , Setaria (Planta)/genética , Compuestos de Sulfonilurea/farmacología , Piridinas , Análisis de Secuencia de ARN , Resistencia a los Herbicidas/genética , Herbicidas/farmacología
6.
Pestic Biochem Physiol ; 184: 105127, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715065

RESUMEN

Two black-grass (Alopecurus myosuroides Huds.) populations (R2105 and R1027) that were suspected to be resistant to clodinafop-propargyl, an acetyl-CoAcarboxylase (ACCase) inhibitor, were found in winter wheat fields in China. Research was carried out to investigate whether resistance to clodinafop-propargyl was present and the molecular mechanism of herbicide resistance in these two populations. Dose-response assays confirmed high level resistance to clodinafop-propargyl in both R2105 and R1027 populations, with resistance indexes 25.1 and 22.1. ACCase gene sequence comparison revealed three amino acid mutations (Trp-1999-Leu, Ile-2041-Asn, or Asp-2078-Gly) in R2105 population and Ile-2041-Asn mutation in R1027 population. Sensitivity to other herbicides assays indicated that R2105 and R1027 populations were cross resistant to fenoxaprop-P-ethyl and multiple resistant to pyroxsulam and mesosulfuron-methyl. The ALS gene sequence analysis revealed that all resistant individuals in R2105 and R1027 populations had the Trp-574-Leu mutation. Applying malathion, significantly decreased the rate of metabolism of clodinafop-propargyl in both R2105 and R1027 populations. This is the first report of multiple resistance to ACCase- and ALS-inhibiting herbicides conferred by target-site mutations and enhanced metabolism in black-grass in China.


Asunto(s)
Herbicidas , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo
7.
Pestic Biochem Physiol ; 188: 105256, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464361

RESUMEN

Amaranthus retroflexus L., a troublesome annual dicotyledonous weed species, is highly competitive with soybean (Glycine max L.). A single-dose herbicide-resistance screening assay identified an A. retroflexus population with suspected resistance to fomesafen. Whole-plant dose-response assays demonstrated that the resistant population (2492) was resistant to protoporphyrinogen oxidase (PPO)-inhibiting herbicides (50.6-fold fomesafen resistance and > 8.1-fold lactofen resistance) compared to a susceptible (S) population. PPX2 gene sequence analysis showed an Arg128Gly amino acid substitution in the 2492 population. Moreover, pretreatment of malathion and the fomesafen metabolic assays through HPLC-MS demonstrated enhanced fomesafen metabolism in the 2492 population. Additionally, the 2492 population was 10.4-fold more resistant to the ALS-inhibiting herbicide imazethapyr and 16.8-fold more resistant to thifensulfuron-methyl than the S population. ALS gene sequence analysis showed an Ala205Val amino acid substitution in the 2492 population. This population of A. retroflexus has coexisting target-site resistance and non-target-site mechanisms for resistance to fomesafen. Multiple herbicide resistance may mean it is necessary to adjust weed management strategies to better control the resistant population.


Asunto(s)
Amaranthus , Herbicidas , Amaranthus/genética , Mutación , Herbicidas/farmacología , China , Malezas , Glycine max
8.
Pestic Biochem Physiol ; 186: 105155, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35973760

RESUMEN

Common lambsquarters (Chenopodium album L.) is a broadleaf weed that can severely damage soybean fields. Two C. album populations (1744 and 1731) suspected resistant to imazethapyr were investigated for resistance levels to imazethapyr, thifensulfuron-methyl, and fomesafen and their resistance mechanisms were investigated. Whole-plant dose-response assays revealed that, compared to the susceptible (S) population, the 1744 population was 16.5-fold resistant to imazethapyr, slightly resistant to thifensulfuron-methyl (resistance index [R/S], <3). The 1731 population was 18.8-fold resistant to imazethapyr, 2.9-fold resistant to thifensulfuron-methyl, and 5.1-fold resistant to fomesafen. In vitro acetolactate synthase (ALS) assays showed 17.1-fold and 19.3-fold resistance levels of 1744 and 1731 populations to imazethapyr respectively. ALS gene sequence analysis identified Ala122Thr amino acid substitution in the 1744 population and Ser653Thr amino acid substitution in the 1731 population. No mutations of the protoporphyrinogen oxidase (PPO) gene were detected. However, pre-treatment with malathion reversed fomesafen resistance, suggesting nontarget-site resistance mechanisms likely play a role in the 1731 population.


Asunto(s)
Acetolactato Sintasa , Chenopodium album , Herbicidas , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Chenopodium album/genética , Chenopodium album/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Protoporfirinógeno-Oxidasa
9.
Pestic Biochem Physiol ; 186: 105164, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35973771

RESUMEN

Redroot amaranth (Amaranthus retroflexus L.) is a noxious weed that affects soybean production in China. Experiments were conducted to determine the molecular basis of resistance to bentazone. Whole-plant dose-response experiments showed that two populations (R1 and R2) exhibited resistance to bentazone with resistance indices of 9.01 and 6.85, respectively. Sequencing of the psbA gene revealed no amino acid substitution in the two populations. qRT-PCR analysis verified that psbA gene expression in R1 and R2 populations was increased significantly after treatment with bentazone, which was 3-fold and 5-fold higher than that in S1 and S2 populations, respectively. The P450 inhibitor malathion significantly reduced the level of resistance in the R1 and R2 populations when used prior to bentazone treatment. The R1 population exhibited multiple resistance to thifensulfuron-methyl and lactofen, caused by target site mutations (Asp-376-Glu in ALS, Arg-128-Gly in PPO2). In conclusion, increased gene expression of the psbA gene and enhanced herbicide metabolism seem to be the basis of resistance to bentazone in these A. retroflexus populations.


Asunto(s)
Amaranthus , Herbicidas , Amaranthus/genética , Benzotiadiazinas , Resistencia a los Herbicidas/genética , Herbicidas/farmacología
10.
Cancer Immunol Immunother ; 70(7): 2059-2071, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33439295

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy, a type of adoptive cell therapy, has been successfully used when treating lymphoma malignancies, but not nearly as successful in treating solid tumors. Trophoblast cell surface antigen 2 (Trop2) is expressed in various solid tumors and plays a role in tumor growth, invasion, and metastasis. In this study, a CAR targeting Trop2 (T2-CAR) was developed with different co-stimulatory intercellular domains. T2-CAR T cells demonstrated a powerful killing ability in the presence of Trop2-positive cells following an in vitro assay. Moreover, T2-CAR T cells produced multiple effector cytokines under antigen stimulation. In tumor-bearing mouse models, the CD27-based T2-CAR T cells showed a higher antitumor activity. Additionally, more CD27-based T2-CAR T cells survived in tumor-bearing mice spleens as well as in the tumor tissue. CD27-based T2-CAR T cells were also found to upregulate IL-7Rα expression, while downregulating PD-1 expression. In conclusion, the CD27 intercellular domain can enhance the T2-CAR T cell killing effect via multiple mechanisms, thus indicating that a CD27-based T2-CAR T cell approach is suitable for clinical applications.


Asunto(s)
Neoplasias de la Mama/terapia , Moléculas de Adhesión Celular/antagonistas & inhibidores , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Apoptosis , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Pestic Biochem Physiol ; 179: 104956, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34802535

RESUMEN

Green foxtail [Setaria viridis (L.) P.Beauv.] is a troublesome grass weed that is widely distributed in maize (Zea mays L.) fields across China. Many populations of S. viridis have evolved resistance to the acetolactate synthase (ALS)-inhibiting herbicide nicosulfuron. The objectives of this research were to confirm nicosulfuron resistance in these populations and to investigate the basis of nicosulfuron resistance. Whole-plant dose-response experiments showed 6 out of 13 S. viridis populations were highly resistance (20-30 times) to nicosulfuron. Sequencing of the ALS gene revealed two amino acid mutations, Asp-376-Glu and Pro-197-Ala, in the nicosulfuron-resistant populations. A malathion pretreatment study revealed that the R376 and R197 subpopulations might have cytochrome P450s-mediated herbicide metabolic resistance. The resistant populations were cross-resistant to imazethapyr but sensitive to topramezone and quizalofop-p-ethyl. This is the first report of resistance to ALS inhibitors conferred by target site mutations (Asp-376-Glu or Pro-197-Ser) and possible cytochrome P450s-involved metabolism in S. viridis.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Setaria (Planta) , Acetolactato Sintasa/genética , Sistema Enzimático del Citocromo P-450/genética , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación , Piridinas , Compuestos de Sulfonilurea
12.
Opt Express ; 28(14): 20634-20644, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680119

RESUMEN

We introduce an effective method for measuring the spatial distribution of complex correlation matrix of a partially coherent vector light field obeying Gaussian statistics by extending our recently advanced generalized Hanbury Brown-Twiss experiment. The method involves a combination of the partially coherent vector light with a pair of fully coherent reference vector fields and a measurement of the intensity-intensity cross-correlation of the combined fields. We show the real and imaginary parts of the complex correlation matrix can be recovered through a judicious control of the phase delay between two reference fields. We test the feasibility of our method by measuring the complex correlation matrix of a specially correlated radially polarized vector beam and we find the consistence between the experimental results and our general theory. We further show that our complex correlation matrix measurement can be used in reconstructing the polarization states hidden behind a thin-layer diffuser.

13.
Opt Express ; 28(5): 7182-7196, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32225952

RESUMEN

A stationary beam forming an Airy-like spectral density in the far field is analyzed theoretically and experimentally. The Schell-model source that radiates such a beam is an extended version of a recently introduced source [O. Korotkova, et al., Opt. Lett.43, 4727 (2018)10.1364/OL.43.004727; X. Chen, et al., Opt. Lett.44, 2470 (2019)10.1364/OL.44.002470, in 1D and 2D, respectively]. We show, in particular, that the source degree of coherence, being the fourth-order root of a Lorentz-Gaussian function and having linear and cubic phase terms, may be either obtained from the Fourier transform of the far-field Airy-like pattern or at the source using the sliding function method. The spectral density of the beam is analyzed on propagation through paraxial ABCD optical systems, on the basis of the generalized Collins integral, by means of the derived closed-form expression. We show that the distribution of the side lobes in the Airy beam spectral density can be controlled by the parameters of the source degree of coherence. Further, an experiment involving a spatial light modulator (SLM) is carried out for generation of such a beam. We experimentally measure the complex degree of coherence of the source and observe the gradual formation of a high-quality Airy-like spectral density towards the far field. In addition, the trajectory of the intensity maxima of the beam after a thin lens is studied both theoretically and experimentally. The random counterpart of the classic, deterministic Airy beam may find applications in directed energy, imaging, beam shaping, and optical trapping.

14.
Immunol Invest ; 49(6): 632-647, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31795780

RESUMEN

BACKGROUND: Loquat leaf is an herb that is commonly used in traditional Chinese medicine (TCM) for its anti-inflammatory properties. Numerous studies have demonstrated that Th17 cells play a fundamental role in mediating SLE pathological deterioration. In our study, we investigated the inhibitory effect of pentacyclic triterpenes from loquat leaf on T helper 17 (Th17) cells and the therapeutic efficacy of OA in Lupus nephritis (LN) development. METHODS: We isolated three pentacyclic triterpene compounds rom loquat leaf by bioassay-directed fractionation and separation method. There were methyl corosolate (MC), uvaol (UL), and oleanolic acid (OA) Firstly, we elucidated Retinoic acid receptor-related orphan receptor gamma t (RORγt) inhibitory activity of these three compounds in the cell-based assay and Th17 differentiation in vitro assay. Then, we used OA-treated pristine-induced LN mice to evaluate the therapeutic effects of OA in LN development. Anti-dsDNA level in serum was detected by enzyme-linked immunosorbent assay (ELISA), interleukin 17A (IL-17A) and interferon-γ (IFN-γ) expression in spleen cells by Flow cytometry (FCM), histomorphologic examination of kidneys were performed by periodic acid schiff (PAS) staining and immunofluorescence analysis. RESULTS: Pentacyclic triterpene compounds (MC, UL, OA) displayed inhibition of RORγt activity in cell-based assay and Th17 differentiation in vitro. Furthermore, our results also showed that OA could significantly decrease serum anti-dsDNA antibody levels, IL-17A and IFN-γ expression and alleviate renal pathological damage in OA-treated group mice than in the model group mice. CONCLUSION: These results demonstrated that OA can improve the clinical manifestation of LN, indicating potential application in SLE therapy.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Eriobotrya/química , Triterpenos Pentacíclicos/farmacología , Hojas de la Planta/química , Células Th17/citología , Células Th17/efectos de los fármacos , Animales , Biomarcadores , Diferenciación Celular/genética , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/etiología , Nefritis Lúpica/metabolismo , Nefritis Lúpica/patología , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Triterpenos Pentacíclicos/química , Células Th17/inmunología , Células Th17/metabolismo , Transcripción Genética
15.
Pestic Biochem Physiol ; 165: 104560, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32359536

RESUMEN

Amaranthus retroflexus L. is one of the most troublesome weeds in autumn-crop fields in Northeast China. In recent years, field applications of fomesafen have failed to control an A. retroflexus population in Heilongjiang Province, China. Therefore, in this study, experiments were conducted to determine the resistance of A. retroflexus to fomesafen and investigate the molecular basis of herbicide resistance. Whole-plant dose-response experiments showed that the resistant (R) population exhibited 41.8-fold resistance to fomesafen compared with the susceptible (S) population. Target-gene sequence analysis revealed an Arg-128-Gly substitution in the protoporphyrinogen oxidase (PPO) in the R population. The response of PPO2 transgenic Arabidopsis thaliana to fomesafen demonstrated that the Arg-128-Gly substitution conferred high resistance to fomesafen. Cross- and multiple-resistance analyses indicated that the R population was cross-resistant to lactofen and carfentrazone-ethyl but was sensitive to imazethapyr, thifensulfuron-methyl, atrazine, and glyphosate. This study indicated that the Arg-128-Gly substitution is the main reason for A. retroflexus resistance to fomesafen. To our knowledge, this is the first report of a target-site based mechanism for the resistance to a PPO-inhibiting herbicide in A. retroflexus.


Asunto(s)
Amaranthus , Herbicidas , Benzamidas , China , Resistencia a los Herbicidas
16.
Bioorg Chem ; 90: 103077, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323598

RESUMEN

Retinoid-related orphan receptor gamma-t (RORγt) belongs to the nuclear receptor superfamily that takes vital roles in the development and maturation of T-helper 17 cell (Th17) and lymph-node genesis. Because Th17 cells have been proved to be major effectors in human autoimmune and inflammatory diseases, the agonists and antagonists of RORγt have been discovered as promising leads for the therapeutics of these diseases. Most of the current studies of RORγt inhibitors have been focused on ligand binding domain (LBD) of RORγt because the structure and binding pockets of LBD have been elucidated and studied in detail. Recent research elucidated that the hinge domain (HD) of RORγt was significantly involved in the SUMOylation of RORγt and thus specifically affecting T cell development but not lymph-node genesis. These discoveries highlighted the potential of HD of RORγt as the target of RORγt inhibitors that could specifically inhibit Th17-related activities without affecting lymph-node genesis. In this study, we utilized a screening system with full-length RORγt including DBD, HD and LBD to evaluate the activities of a synthesized library of tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives. We identified a potent lead compound (28) that effectively inhibited Th17 cell differentiation. Docking and structure-activity relationship (SAR) studies showed that compound 28 may not bind in the binding pocket as most of the known inhibitors, but may bind in the pocket closed to Gln223 and Leu244 in HD. Our studies showed evidence that the HD of RORγt could afford a binding pocket for Th17 specific inhibitors and this domain should be further studied to discover potent and specific RORγt inhibitors.


Asunto(s)
Diferenciación Celular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Pirimidinas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Th17/citología , Citocinas/metabolismo , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
17.
Mar Drugs ; 17(5)2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-31060323

RESUMEN

High intraocular pressure (IOP)-induced retinal ischemia leads to acute glaucoma, which is one of the leading causes of irreversible visual-field loss, characterized by loss of retinal ganglion cells (RGCs) and axonal injury in optic nerves (ONs). Oxidative stress and the inflammatory response play an important role in the ischemic injury of retinal and optic nerves. We focus on 5α-androst-3ß, 5α, 6ß-triol (TRIOL), a synthetic neuroactive derivative of natural marine steroids 24-methylene-cholest-3ß, 5α, 6ß, 19-tetrol and cholestane-3ß, 5α, 6ß-triol, which are two neuroactive polyhydroxysterols isolated from the soft coral Nephthea brassica and the gorgonian Menella kanisa, respectively. We previously demonstrated that TRIOL was a neuroprotective steroid with anti-inflammatory and antioxidative activities. However, the potential role of TRIOL on acute glaucoma and its underlying mechanisms remains unclear. Here, we report TRIOL as a promising neuroprotectant that can protect RGCs and their axons/dendrites from ischemic-reperfusion (I/R) injury in an acute intraocular hypertension (AIH) model. Intravitreal injection of TRIOL significantly alleviated the loss of RGCs and the damage of axons and dendrites in rats and mice with acute glaucoma. As NF-E2-related factor 2 (Nrf2) is one of the most critical regulators in oxidative and inflammatory injury, we further evaluated the effect of TRIOL on Nrf2 knockout mice, and the neuroprotective role of TRIOL on retinal ischemia was not observed in Nrf2 knockout mice, indicating that activation of Nrf2 is responsible for the neuroprotection of TRIOL. Further experiments demonstrated that TRIOL can activate and upregulate Nrf2, along with its downstream hemeoxygenase-1 (HO-1), by negative regulation of Kelch-like ECH (Enoyl-CoA Hydratase) associated Protein-1 (Keap1). In conclusion, our study shed new light on the neuroprotective therapy of retinal ischemia and proposed a promising marine drug candidate, TRIOL, for the therapeutics of acute glaucoma.


Asunto(s)
Androstanoles/farmacología , Factor 2 Relacionado con NF-E2/deficiencia , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Células Ganglionares de la Retina/efectos de los fármacos , Esteroides/farmacología , Animales , Técnicas de Cultivo de Célula , Hipoxia de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Glaucoma , Hemo-Oxigenasa 1/metabolismo , Inflamación/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hipertensión Ocular/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
18.
Pestic Biochem Physiol ; 155: 126-131, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30857622

RESUMEN

Tausch's goatgrass (Aegilops tauschii Coss.) is one of the most troublesome weeds in winter wheat-growing regions of China. In recent years, the recommended field rate of mesosulfuron-methyl failed to control the Tausch's goatgrass population in Shanxi province (SX), China. Experiments were conducted to characterize the herbicide resistance level and investigate the basis of mesosulfuron-methyl resistance in Tausch's goatgrass. Whole-plant dose-response tests showed that the SX population exhibited 11.42-fold resistance to mesosulfuron-methyl than the susceptible HN population, and the resistance level in the SX population could be significantly reduced by malathion, a cytochrome P450 inhibitor. The SX population also exhibited cross-resistance to imazethapyr, pyroxsulam and bispyribac­sodium. Acetohydroxyacid synthase (AHAS) sequencing and enzyme activity assays demonstrated that the mesosulfuron-methyl resistance was not conferred by target-site substitution. A sensitive AHAS, together with the malathion revisable resistance, suggested that herbicide metabolism likely plays a main role in the mechanism of mesosulfuron-methyl resistance in the SX population. To our knowledge, this is the first report elucidating the mesosulfuron-methyl resistance in Tausch's goatgrass.


Asunto(s)
Aegilops/efectos de los fármacos , Herbicidas/farmacología , Compuestos de Sulfonilurea/farmacología , Acetolactato Sintasa/metabolismo , Aegilops/metabolismo , Benzoatos/farmacología , Ácidos Nicotínicos/farmacología , Pirimidinas/farmacología
19.
Plant J ; 89(2): 407-415, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27743420

RESUMEN

Glyphosate is an important non-selective herbicide that is in common use worldwide. However, evolved glyphosate-resistant (GR) weeds significantly affect crop yields. Unfortunately, the mechanisms underlying resistance in GR weeds, such as goosegrass (Eleusine indica (L.) Gaertn.), an annual weed found worldwide, have not been fully elucidated. In this study, transcriptome analysis was conducted to further assess the potential mechanisms of glyphosate resistance in goosegrass. The RNA sequencing libraries generated 24 597 462 clean reads. De novo assembly analysis produced 48 852 UniGenes with an average length of 847 bp. All UniGenes were annotated using seven databases. Sixteen candidate differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time PCR (qRT-PCR). Among these UniGenes, the EPSPS and PFK genes were constitutively up-regulated in resistant (R) individuals and showed a higher copy number than that in susceptible (S) individuals. The expressions of four UniGenes relevant to photosynthesis were inhibited by glyphosate in S individuals, and this toxic response was confirmed by gas exchange analysis. Two UniGenes annotated as glutathione transferase (GST) were constitutively up-regulated in R individuals, and were induced by glyphosate both in R and S. In addition, the GST activities in R individuals were higher than in S. Our research confirmed that two UniGenes (PFK, EPSPS) were strongly associated with target resistance, and two GST-annotated UniGenes may play a role in metabolic glyphosate resistance in goosegrass.


Asunto(s)
Eleusine/efectos de los fármacos , Eleusine/genética , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicina/farmacología , Herbicidas/farmacología , Anotación de Secuencia Molecular , Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Glifosato
20.
Pestic Biochem Physiol ; 143: 201-206, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29183593

RESUMEN

The evolution of weed-resistant species threatens the sustainable use of glyphosate, which is the most important herbicide widely used in agriculture worldwide. Moreover, the high glyphosate resistance (>180-fold based on LD50) of Eleusine indica found in Malaysia, which carries a double mutation in its 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), made the control of this species more difficult. By contrast, the same species carrying the same double mutation in EPSPS (T102I+P106S) but found in China only shows a resistance level of not more than 14-fold based on GR50. The resistance level of this population is four times higher than that of the population carrying a single mutation (P106L). Although the members of this population survive under a high glyphosate dosage of 10,080gaeha-1, their growth was significantly inhibited by glyphosate under the recommend dose (840gaeha-1), where in the fresh weight was 85.4% of the control. EPSPS expression, relative copy number, and EPSPS activity in this population were similar to those of the susceptible population. In addition, the expression of two glutathione transferase (GST) genes (GST-U8 and GST-23) and the enzyme activity of the GST in this population did not significantly differ from those of the susceptible population. This finding is important in elucidating the resistance of the naturally evolved glyphosate-resistant (GR) weed species carrying a double mutation in EPSPS to glyphosate.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Eleusine/genética , Resistencia a los Herbicidas/genética , Eleusine/metabolismo , Amplificación de Genes , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Glicina/análogos & derivados , Glicina/farmacología , Herbicidas/farmacología , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glifosato
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda