Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell Proteomics ; 11(4): M111.015313, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22174317

RESUMEN

The HIV-1 Rev protein plays a key role in the late phase of virus replication. It binds to the Rev Response Element found in underspliced HIV mRNAs, and drives their nuclear export by the CRM1 receptor pathway. Moreover, mounting evidence suggests that Rev has additional functions in viral replication. Here we employed proteomics and statistical analysis to identify candidate host cell factors that interact with Rev. For this we studied Rev complexes assembled in vitro with nuclear or cytosolic extracts under conditions emulating various intracellular environments of Rev. We ranked the protein-protein interactions by combining several statistical features derived from pairwise comparison of conditions in which the abundance of the binding partners changed. As a validation set, we selected the eight DEAD/H box proteins of the RNA helicase family from the top-ranking 5% of the proteins. These proteins all associate with ectopically expressed Rev in immunoprecipitates of cultured cells. From gene knockdown approaches, our work in combination with previous studies indicates that six of the eight DEAD/H proteins are linked to HIV production in our cell model. In a more detailed analysis of infected cells where either DDX3X, DDX5, DDX17, or DDX21 was silenced, we observed distinctive phenotypes for multiple replication features, variously involving virus particle release, the levels of unspliced and spliced HIV mRNAs, and the nuclear and cytoplasmic concentrations of these transcripts. Altogether the work indicates that our top-scoring data set is enriched in Rev-interacting proteins relevant to HIV replication. Our more detailed analysis of several Rev-interacting DEAD proteins suggests a complex set of functions for the helicases in regulation of HIV mRNAs. The strategy used here for identifying Rev interaction partners should prove effective for analyzing other viral and cellular proteins.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , VIH-1/patogenicidad , Interacciones Huésped-Patógeno , Replicación Viral/fisiología , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo , ARN Helicasas DEAD-box/genética , Escherichia coli/genética , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Células HeLa , Humanos , Proteómica , ARN Interferente Pequeño/genética
2.
J Struct Biol ; 177(1): 24-31, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22126840

RESUMEN

The nuclear lamina is a protein meshwork that lines the nuclear envelope in metazoan cells. It is composed largely of a polymeric assembly of lamins, which comprise a distinct sequence homology class of the intermediate filament protein family. On the basis of its structural properties, the lamina originally was proposed to provide scaffolding for the nuclear envelope and to promote anchoring of chromatin and nuclear pore complexes at the nuclear surface. This viewpoint has expanded greatly during the past 25 years, with a host of surprising new insights on lamina structure, molecular composition and functional attributes. It has been established that the self-assembly properties of lamins are very similar to those of cytoplasmic intermediate filament proteins, and that the lamin polymer is physically associated with components of the cytoplasmic cytoskeleton and with a multitude of chromatin and inner nuclear membrane proteins. Cumulative evidence points to an important role for the lamina in regulating signaling and gene activity, and in mechanically coupling the cytoplasmic cytoskeleton to the nucleus. The significance of the lamina has been vaulted to the forefront by the discovery that mutations in lamins and lamina-associated polypeptides lead to an array of human diseases. A key future challenge is to understand how the lamina integrates pathways for mechanics and signaling at the molecular level. Understanding the structure of the lamina from the atomic to supramolecular levels will be essential for achieving this goal.


Asunto(s)
Núcleo Celular/metabolismo , Lámina Nuclear/metabolismo , Animales , Núcleo Celular/ultraestructura , Cromatina/metabolismo , Citoesqueleto/metabolismo , Humanos , Proteínas de Filamentos Intermediarios , Laminas/metabolismo , Laminas/ultraestructura , Microscopía Fluorescente/métodos , Modelos Moleculares , Mutación , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Lámina Nuclear/ultraestructura , Poro Nuclear/metabolismo
3.
Cancer Res ; 67(6): 2586-94, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17363577

RESUMEN

Diffuse large B-cell lymphoma is the most common lymphoid malignancy in adults. It is a heterogeneous disease with variability in outcome. Genomic instability of a subset of proto-oncogenes, including c-MYC, BCL6, RhoH, PIM1, and PAX5, can contribute to initial tumor development and has been correlated with poor prognosis and aggressive tumor growth. Lymphomas in which these proto-oncogenes are unstable derive from germinal center B cells that express activation-induced deaminase (AID), the B-cell-specific factor that deaminates DNA to initiate immunoglobulin gene diversification. Proto-oncogene instability is evident as both aberrant hypermutation and translocation, paralleling programmed instability which diversifies the immunoglobulin loci. We have asked if genomic sequence correlates with instability in AID-positive B-cell lymphomas. We show that instability does not correlate with enrichment of the WRC sequence motif that is the consensus for deamination by AID. Instability does correlate with G-richness, evident as multiple runs of the base guanine on the nontemplate DNA strand. Extending previous analysis of c-MYC, we show experimentally that transcription of BCL6 and RhoH induces formation of structures, G-loops, which contain single-stranded regions targeted by AID. We further show that G-richness does not characterize translocation breakpoints in AID-negative B- and T-cell malignancies. These results identify G-richness as one feature of genomic structure that can contribute to genomic instability in AID-positive B-cell malignancies.


Asunto(s)
Inestabilidad Genómica , Linfoma de Células B/genética , Proto-Oncogenes , Linfocitos B/enzimología , Linfocitos B/patología , Guanosina/genética , Humanos , Inmunoglobulinas/genética , Linfoma de Células B/enzimología , Conformación de Ácido Nucleico , Nucleósido Desaminasas/metabolismo , Proto-Oncogenes Mas , Transcripción Genética
4.
Cells ; 8(12)2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810281

RESUMEN

Development of hepatitis C virus (HCV) infection cell culture systems has permitted the identification of cellular factors that regulate the HCV life cycle. Some of these cellular factors affect steps in the viral life cycle that are tightly associated with intracellular membranes derived from the endoplasmic reticulum (ER). Here, we describe the discovery of erlin-1 protein as a cellular factor that regulates HCV infection. Erlin-1 is a cholesterol-binding protein located in detergent-resistant membranes within the ER. It is implicated in cholesterol homeostasis and the ER-associated degradation pathway. Silencing of erlin-1 protein expression by siRNA led to decreased infection efficiency characterized by reduction in intracellular RNA accumulation, HCV protein expression and virus production. Mechanistic studies revealed that erlin-1 protein is required early in the infection, downstream of cell entry and primary translation, specifically to initiate RNA replication, and later in the infection to support infectious virus production. This study identifies erlin-1 protein as an important cellular factor regulating HCV infection.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , Interacciones Huésped-Patógeno , Proteínas del Tejido Nervioso/metabolismo , Línea Celular Tumoral , Silenciador del Gen , Hepatitis C/genética , Humanos , Metabolismo de los Lípidos , Proteínas del Tejido Nervioso/genética , ARN Interferente Pequeño/genética , Carga Viral , Internalización del Virus , Replicación Viral
5.
J Mol Biol ; 358(4): 1071-80, 2006 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-16530788

RESUMEN

RecQ family helicases play important roles at G-rich domains of the genome, including the telomeres, rDNA, and immunoglobulin switch regions. This appears to reflect the unusual ability of enzymes in this family to unwind G4 DNA. How RecQ family helicases recognize this substrate has not been established. Here, we show that G4 DNA is a preferred target for BLM helicase within the context of long DNA molecules. We identify the RQC domain, found only in RecQ family enzymes, as an independent, high affinity and conserved G4 DNA binding domain; and show that binding to Holliday junctions involves both the RQC and the HRDC domains. These results provide mechanistic understanding of differences and redundancies of function and activities among RecQ family helicases, and of how deficiencies in human members of this family may contribute to genomic instability and disease.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , ADN Helicasas/química , ADN Helicasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Secuencia Conservada , ADN/química , ADN/genética , ADN/metabolismo , ADN Helicasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Técnicas In Vitro , Cinética , Microscopía Electrónica , Estructura Terciaria de Proteína , RecQ Helicasas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
6.
Nucleic Acids Res ; 30(18): 3954-61, 2002 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12235379

RESUMEN

To understand the specific genetic instabilities associated with deficiencies in RecQ family helicases, we have studied the substrate preferences of two closely related members of this family, human BLM and Saccharomyces cerevisiae Sgs1p. Here we show that both BLM and Sgs1p preferentially unwind G4 DNA relative to Holliday junction substrates, and that substrate preference reflects binding affinity and maps to the conserved central helicase domain. We identify the porphyrin N-methyl mesoporphyrin IX (NMM) as a specific inhibitor of G4 DNA unwinding, and show that in the presence of NMM the helicase becomes trapped on the NMM-G4 DNA complex, consuming ATP but unable to unwind or dissociate. These results suggest that BLM and Sgs1p function proactively in replication to remove G4 DNA structures which would otherwise present obstacles to fork progression, rather than by promoting recombination to restart a fork that has stalled.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , ADN/metabolismo , Unión Competitiva/efectos de los fármacos , ADN/química , Humanos , Mesoporfirinas/metabolismo , Mesoporfirinas/farmacología , Conformación de Ácido Nucleico , RecQ Helicasas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Especificidad por Sustrato
7.
Nucleic Acids Res ; 31(11): 2944-51, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12771220

RESUMEN

Distamycin binds the minor groove of duplex DNA at AT-rich regions and has been a valuable probe of protein interactions with double-stranded DNA. We find that distamycin can also inhibit protein interactions with G-quadruplex (G4) DNA, a stable four-stranded structure in which the repeating unit is a G-quartet. Using NMR, we show that distamycin binds specifically to G4 DNA, stacking on the terminal G-quartets and contacting the flanking bases. These results demonstrate the utility of distamycin as a probe of G4 DNA-protein interactions and show that there are (at least) two distinct modes of protein-G4 DNA recognition which can be distinguished by sensitivity to distamycin.


Asunto(s)
ADN/química , ADN/metabolismo , Distamicinas/química , Distamicinas/metabolismo , Guanina/química , Secuencia de Bases , Sitios de Unión , Unión Competitiva , G-Cuádruplex , Ligandos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Nucleolina
8.
PLoS One ; 10(3): e0116196, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25790465

RESUMEN

The nuclear lamina, along with associated nuclear membrane proteins, is a nexus for regulating signaling in the nucleus. Numerous human diseases arise from mutations in lamina proteins, and experimental models for these disorders have revealed aberrant regulation of various signaling pathways. Previously, we reported that the inner nuclear membrane protein Lem2, which is expressed at high levels in muscle, promotes the differentiation of cultured myoblasts by attenuating ERK signaling. Here, we have analyzed mice harboring a disrupted allele for the Lem2 gene (Lemd2). No gross phenotypic defects were seen in heterozygotes, although muscle regeneration induced by cardiotoxin was delayed. By contrast, homozygous Lemd2 knockout mice died by E11.5. Although many normal morphogenetic hallmarks were observed in E10.5 knockout embryos, most tissues were substantially reduced in size. This was accompanied by activation of multiple MAP kinases (ERK1/2, JNK, p38) and AKT. Knockdown of Lem2 expression in C2C12 myoblasts also led to activation of MAP kinases and AKT. These findings indicate that Lemd2 plays an essential role in mouse embryonic development and that it is involved in regulating several signaling pathways. Since increased MAP kinase and AKT/mTORC signaling is found in other animal models for diseases linked to nuclear lamina proteins, LEMD2 should be considered to be another candidate gene for human disease.


Asunto(s)
Desarrollo Embrionario , Proteínas de la Membrana/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Técnicas de Inactivación de Genes , Ratones , Ratones Noqueados , Mutación
9.
J Cell Biol ; 203(3): 427-36, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24217618

RESUMEN

Cellular cholesterol levels are controlled by endoplasmic reticulum (ER) sterol sensing proteins, which include Scap and Insig-1. With cholesterol sufficiency, Insig inhibits the activation of sterol regulatory element binding proteins (SREBPs), key transcription factors for cholesterol and fatty acid biosynthetic genes, by associating with Scap-SREBP complexes to promote their ER retention. Here we show that the multimeric ER proteins erlins-1 and -2 are additional SREBP regulators. Depletion of erlins from cells grown with sterol sufficiency led to canonical activation of SREBPs and their target genes. Moreover, SREBPs, Scap, and Insig-1 were physically associated with erlins. Erlins bound cholesterol with specificity and strong cooperativity and responded to ER cholesterol changes with altered diffusional mobility, suggesting that erlins themselves may be regulated by cholesterol. Together, our results define erlins as novel cholesterol-binding proteins that are directly involved in regulating the SREBP machinery. We speculate that erlins promote stability of the SREBP-Scap-Insig complex and may contribute to the highly cooperative control of this system.


Asunto(s)
Colesterol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Activación Enzimática , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Proteínas del Tejido Nervioso/genética , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño
10.
Mol Cell Biol ; 29(21): 5718-28, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19720741

RESUMEN

Mutations in certain nuclear envelope (NE) proteins cause muscular dystrophies and other disorders, but the disease mechanisms remain unclear. The nuclear envelope transmembrane protein NET25 (Lem2) is a truncated paralog of MAN1, an NE component linked to bone disorders. NET25 and MAN1 share an approximately 40-residue LEM homology domain with emerin, the protein mutated in X-linked Emery-Dreifuss muscular dystrophy. However, roles for NET25 and MAN1 in myogenesis have not yet been described. Using RNA interference in C2C12 myoblasts, we show for the first time that both NET25 and MAN1 are required for myogenic differentiation. NET25 depletion causes hyperactivation of extracellular signal-regulated kinase 1/2 at the onset of differentiation, and pharmacological inhibition of this transient overactivation rescues myogenesis. In contrast, pharmacological inhibition of both mitogen-activated protein kinase and transforming growth factor beta signaling is required to rescue differentiation after MAN1 depletion. Ectopic expression of silencing-resistant NET25 rescues myogenesis after depletion of emerin but not after MAN1 silencing. Thus, NET25 and emerin have at least partially overlapping functions during myogenic differentiation, which are distinct from those of MAN1. Our work supports the hypothesis that deregulation of cell signaling contributes to NE-linked disorders and suggests that mutations in NET25 and MAN1 may cause muscle diseases.


Asunto(s)
Diferenciación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de la Membrana/metabolismo , Mioblastos/citología , Mioblastos/enzimología , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Prueba de Complementación Genética , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Ratones , Desarrollo de Músculos/efectos de los fármacos , Mioblastos/efectos de los fármacos , Membrana Nuclear/efectos de los fármacos , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia
11.
J Cell Biol ; 179(4): 583-4, 2007 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-17998404

RESUMEN

Eukaryotic cells have an "awareness" of their volume and organellar volumes, and maintain a nuclear size that is proportional to the total cell size. New studies in budding and fission yeast have examined the relationship between cell and nuclear volumes. It was found that the size of the nucleus remains proportional to cell size in a wide range of genetic backgrounds and growth conditions that alter cell volume and DNA content. Moreover, in multinucleated fission yeast cells, Neumann and Nurse (see p. 593 of this issue) found that the sizes of individual nuclei are controlled by the relative amount of cytoplasm surrounding each nucleus. These results highlight a role of the cytoplasm in nuclear size control.


Asunto(s)
Núcleo Celular/metabolismo , Células Eucariotas/citología , Tamaño de los Orgánulos , Schizosaccharomyces/citología , Schizosaccharomyces/crecimiento & desarrollo , Tamaño de la Célula , Citoplasma/metabolismo , Células Eucariotas/ultraestructura , Mutación , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestructura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda