Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Appl Microbiol Biotechnol ; 104(21): 9363-9385, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32926221

RESUMEN

Phyllosticta citricarpa, Elsinoë fawcettii, Elsinoë australis, and Pseudocercospora angolensis are major pathogens of citrus crops worldwide and can cause non-characteristic symptoms that may lead to confusion regarding the causative agent. These fungi are subject to international phytosanitary regulations, and testing on fruits or leaves requires accurate and easy-to-use tools. New multiplex conventional PCR and real-time PCR assays were developed here to achieve highly accurate simultaneous detection of all four fungal pathogens in fruit tissues. We designed new oligonucleotide combinations for P. citricarpa, E. fawcettii, and E. australis and combined them with already available primers and hydrolysis probes to be used in either PCR assay. The limit of detection for multiplex conventional PCR was as low as 100 pg µL-1 for P. citricarpa, E. fawcettii, and E. australis and 10 pg µL-1 of target DNA per reaction tube for P. angolensis. The quadruplex real-time PCR assay successfully yielded repeatable positive results with as low as 242, 243, 241, and 242 plasmidic copies of target DNA of P. citricarpa, E. fawcettii, E. australis, and P. angolensis, respectively. Moreover, analysis of 60 naturally infected citrus samples yielded 100% concordant results by both assays. Our validation experiment revealed that the multiplex real-time PCR assay showed high specificity except a cross-reaction with P. paracitricarpa DNA. Sensitivity, repeatability, reproducibility, and robustness were verified, and the assay could be used following different DNA extraction procedures, supporting fitness for routine analysis. These new multiplex tools should be of great interest as cost-effective solutions for regulatory authorities and diagnostic laboratories, enabling testing for four important pathogens in single-tube reactions. KEY POINTS: • Development of new conventional PCR and qPCR assays for four citrus pathogens. • Very low limits of detection were found for multiplex conventional PCR. • qPCR had high specificity, sensitivity, repeatability, reproducibility, and robustness.


Asunto(s)
Citrus , Ascomicetos , Reacción en Cadena de la Polimerasa Multiplex , Enfermedades de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
2.
Plant Dis ; 103(2): 345-356, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30566843

RESUMEN

Elsinoë fawcettii, E. australis, and Pseudocercospora angolensis are causal agents of citrus scab and spot diseases. The three pathogens are listed as quarantine pests in many countries and are subject to phytosanitary measures to prevent their entry. Diagnosis of these diseases based on visual symptoms is problematic, as they could be confused with other citrus diseases. Isolation of E. fawcettii, E. australis, and P. angolensis from infected tissues is challenging because they grow slowly on culture media. This study developed rapid and specific detection tools for the in planta detection of these pathogens, using either conventional PCR or one-tube multiplex real-time PCR. Primers and hybridization probes were designed to target the single-copy protein-coding gene MS204 for E. fawcettii and E. australis and the translation elongation factor (Tef-1α) gene for P. angolensis. The specificity of the assays was evaluated by testing against DNA extracted from a large number of isolates (102) collected from different citrus-growing areas in the world and from other hosts. The newly described species E. citricola was not included in the specificity test due to its unavailability from the CBS collection. The detection limits of conventional PCR for the three pathogens were 100, 100, and 10 pg µl-1 gDNA per reaction for E. fawcettii, E. australis, and P. angolensis, respectively. The quadruplex qPCR was fully validated assessing the following performance criteria: sensitivity, specificity, repeatability, reproducibility, and robustness. The quadruplex real-time PCR proved to be highly sensitive, detecting as low as 243, 241, and 242 plasmidic copies (pc) µl-1 of E. fawcettii, E. australis, and P. angolensis, respectively. Sensitivity and specificity of this quadruplex assay were further confirmed using 176 naturally infected citrus samples collected from Ethiopia, Cameroon, the United States, and Australia. The quadruplex assay developed in this study is robust, cost-effective, and capable of high-throughput detection of the three targets directly from citrus samples. This new detection tool will substantially reduce the turnaround time for reliable species identification and allow rapid response and appropriate action.


Asunto(s)
Ascomicetos , Citrus , Frutas , Reacción en Cadena en Tiempo Real de la Polimerasa , Ascomicetos/genética , Ascomicetos/fisiología , Citrus/microbiología , Frutas/microbiología , Genes Fúngicos/genética , Enfermedades de las Plantas/microbiología , Reproducibilidad de los Resultados
3.
PeerJ ; 11: e16354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901471

RESUMEN

Citrus crops are affected by many fungal diseases. Among them, Citrus Black Spot caused by the ascomycete Phyllosticta citricarpa is particularly economically damaging wherever it occurs. Many other species of Phyllosticta are described on Citrus, but only P. citricarpa is considered a quarantine pest on the European continent. In order to prevent the introduction of this species into Europe, it is essential to have a detection test which can reliably identify it, and not confuse it with other species present on citrus, notably P. paracitricarpa. The latter taxon has recently been described as very close to P. citricarpa, and most detection tests do not allow to distinguish the two species. In this work, we exploited the genomic data of 37 isolates of Phyllosticta spp. from citrus, firstly to assess their phylogenetic relationships, and secondly to search for genomic regions that allowed the definition of species-specific markers of P. citricarpa. Analysis of 51 concatenated genes separated P. citricarpa and P. paracitricarpa in two phylogenetic clades. A locus was selected to define a hydrolysis probe and primers combination that could be used in real-time PCR for the specific detection of the quarantine species, to the exclusion of all others present on Citrus. This test was then thoroughly validated on a set of strains covering a wide geographical diversity, and on numerous biological samples to demonstrate its reliability for regulatory control. The validation data highlighted the need to check the reliability of the test in advance, when a change of reagents was being considered.


Asunto(s)
Ascomicetos , Citrus , Filogenia , Citrus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Genómica , Ascomicetos/genética
4.
J Fungi (Basel) ; 8(8)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893146

RESUMEN

Ceratocystis platani (CP), an ascomycetous fungus, is the agent of canker stain, a lethal vascular disease of Platanus species. Ceratocystis platani has been listed as a quarantine pest (EPPO A2 list) due to extensive damage caused in Southern Europe and the Mediterranean region. As traditional diagnostic assays are ineffective, a Real-Time PCR detection method based on EvaGreen, SYBR Green, and Taqman assays was previously developed, validated in-house, and included in the official EPPO standard PM7/14 (2). Here, we describe the results of a test performance study performed by nine European laboratories for the purpose of an interlaboratory validation. Verification of the DNA extracted from biological samples guaranteed the high quality of preparations, and the stability and the homogeneity of the aliquots intended for the laboratories. All of the laboratories reproduced nearly identical standard curves with efficiencies close to 100%. Testing of blind-coded DNA extracted from wood samples revealed that all performance parameters-diagnostic sensitivity, diagnostic specificity, accuracy and reproducibility-were best fit in most cases both at the laboratory and at the assay level. The previously established limit of detection, 3 fg per PCR reaction, was also validated with similar excellent results. The high interlaboratory performance of this Real-Time PCR method confirms its value as a primary tool to safeguard C. platani-free countries by way of an accurate monitoring, and to investigate the resistance level of potentially canker stain-resistant Platanus genotypes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda