Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Stroke ; 54(12): 3141-3152, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38011231

RESUMEN

BACKGROUND: Sleep apnea (SA) is a major threat to physical health and carries a significant economic burden. These impacts are worsened by its interaction with, and induction of, its comorbidities. SA holds a bidirectional relationship with hypertension, which drives atherosclerosis/arteriolosclerosis, ultimately culminating in vascular dementia. METHODS: To enable a better understanding of these sequelae of events, we investigated innate SA and its effects on cognition in adult-aged spontaneously hypertensive rats, which have a range of cardiovascular disorders: plethysmography and electroencephalographic/electromyographic recordings were used to assess sleep-wake state, breathing parameters, and sleep-disordered breathing; immunocytochemistry was used to assess vascular and neural health; the forced alteration Y maze and Barnes maze were used to assess short- and long-term memories, respectively; and an anesthetized preparation was used to assess baroreflex sensitivity. RESULTS: Spontaneously hypertensive rats displayed a higher degree of sleep-disordered breathing, which emanates from poor vascular health leading to a loss of preBötzinger Complex neurons. These rats also display small vessel white matter disease, a form of vascular dementia, which may be exacerbated by the SA-induced neuroinflammation in the hippocampus to worsen the related deficits in both long- and short-term memories. CONCLUSIONS: Therefore, we postulate that hypertension induces SA through vascular damage in the respiratory column, culminating in neuronal loss in the inspiratory oscillator. This induction of SA, which, in turn, will independently exacerbate hypertension and neural inflammation, increases the rate of vascular dementia.


Asunto(s)
Demencia Vascular , Hipertensión , Rarefacción Microvascular , Síndromes de la Apnea del Sueño , Humanos , Adulto , Ratas , Animales , Anciano , Ratas Endogámicas SHR , Demencia Vascular/complicaciones , Rarefacción Microvascular/complicaciones , Síndromes de la Apnea del Sueño/complicaciones , Hipertensión/complicaciones
2.
J Neurosci ; 35(3): 1052-67, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609622

RESUMEN

Contiguous brain regions associated with a given behavior are increasingly being divided into subregions associated with distinct aspects of that behavior. Using recently developed neuronal hyperpolarizing technologies, we functionally dissect the parafacial region in the medulla, which contains key elements of the central pattern generator for breathing that are important in central CO2-chemoreception and for gating active expiration. By transfecting different populations of neighboring neurons with allatostatin or HM4D Gi/o-coupled receptors, we analyzed the effect of their hyperpolarization on respiration in spontaneously breathing vagotomized urethane-anesthetized rats. We identify two functionally separate parafacial nuclei: ventral (pFV) and lateral (pFL). Disinhibition of the pFL with bicuculline and strychnine led to active expiration. Hyperpolarizing pFL neurons had no effect on breathing at rest, or changes in inspiratory activity induced by hypoxia and hypercapnia; however, hyperpolarizing pFL neurons attenuated active expiration when it was induced by hypercapnia, hypoxia, or disinhibition of the pFL. In contrast, hyperpolarizing pFV neurons affected breathing at rest by decreasing inspiratory-related activity, attenuating the hypoxia- and hypercapnia-induced increase in inspiratory activity, and when present, reducing expiratory-related abdominal activity. Together with previous observations, we conclude that the pFV provides a generic excitatory drive to breathe, even at rest, whereas the pFL is a conditional oscillator quiet at rest that, when activated, e.g., during exercise, drives active expiration.


Asunto(s)
Bulbo Raquídeo/fisiología , Neuronas/fisiología , Respiración , Centro Respiratorio/fisiología , Animales , Ratas
3.
J Neurosci ; 35(13): 5284-92, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25834053

RESUMEN

The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature.


Asunto(s)
Adenosina Trifosfato/metabolismo , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética , Transducción de Señal , Corteza Somatosensorial/fisiología , Fosfatasa Ácida , Adenosina Trifosfato/antagonistas & inhibidores , Animales , Circulación Cerebrovascular/efectos de los fármacos , Estimulación Eléctrica , Miembro Anterior/fisiología , Neuroimagen Funcional , Masculino , Microinyecciones , Proteínas Tirosina Fosfatasas/administración & dosificación , Proteínas Tirosina Fosfatasas/genética , Antagonistas de Receptores Purinérgicos P1/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Corteza Somatosensorial/irrigación sanguínea , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/metabolismo
5.
J Neurosci ; 33(24): 10143-53, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23761909

RESUMEN

Astrocytes are found throughout the brain where they make extensive contacts with neurons and synapses. Astrocytes are known to display intracellular Ca(2+) signals and release signaling molecules such as D-serine into the extracellular space. However, the role(s) of astrocyte Ca(2+) signals in hippocampal long-term potentiation (LTP), a form of synaptic plasticity involved in learning and memory, remains unclear. Here, we explored a recently discovered novel TRPA1 channel-mediated transmembrane Ca(2+) flux pathway in astrocytes. Specifically, we determined whether block or genetic deletion of TRPA1 channels affected LTP of Schaffer collateral to CA1 pyramidal neuron synapses. Using pharmacology, TRPA1(-/-) mice, imaging, electrophysiology, and D-serine biosensors, our data indicate that astrocyte TRPA1 channels contribute to basal Ca(2+) levels and are required for constitutive D-serine release into the extracellular space, which contributes to NMDA receptor-dependent LTP. The findings have broad relevance for the study of astrocyte-neuron interactions by demonstrating how TRPA1 channel-mediated fluxes contribute to astrocyte basal Ca(2+) levels and neuronal function via constitutive D-serine release.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Potenciación a Largo Plazo/fisiología , Microdominios de Membrana/metabolismo , Serina/metabolismo , Acetanilidas/farmacología , Animales , Astrocitos/citología , Astrocitos/ultraestructura , Región CA3 Hipocampal/citología , Células Cultivadas , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas HSP90 de Choque Térmico , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Potenciación a Largo Plazo/genética , Microdominios de Membrana/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Inmunoelectrónica , Técnicas de Placa-Clamp , Purinas/farmacología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , beta-Alanina/farmacología , Ácido gamma-Aminobutírico/farmacología
7.
Bio Protoc ; 14(8): e4973, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38737784

RESUMEN

In vivo brain imaging, using a combination of genetically encoded Ca2+ indicators and gradient refractive index (GRIN) lens, is a transformative technology that has become an increasingly potent research tool over the last decade. It allows direct visualisation of the dynamic cellular activity of deep brain neurons and glia in conscious animals and avoids the effect of anaesthesia on the network. This technique provides a step change in brain imaging where fibre photometry combines the whole ensemble of cellular activity, and multiphoton microscopy is limited to imaging superficial brain structures either under anaesthesia or in head-restrained conditions. We have refined the intravital imaging technique to image deep brain nuclei in the ventral medulla oblongata, one of the most difficult brain structures to image due to the movement of brainstem structures outside the cranial cavity during free behaviour (head and neck movement), whose targeting requires GRIN lens insertion through the cerebellum-a key structure for balance and movement. Our protocol refines the implantation method of GRIN lenses, giving the best possible approach to image deep extracranial brainstem structures in awake rodents with improved cell rejection/acceptance criteria during analysis. We have recently reported this method for imaging the activity of retrotrapezoid nucleus and raphe neurons to outline their chemosensitive characteristics. This revised method paves the way to image challenging brainstem structures to investigate their role in complex behaviours such as breathing, circulation, sleep, digestion, and swallowing, and could be extended to image and study the role of cerebellum in balance, movement, motor learning, and beyond. Key features • We developed a protocol that allows imaging from brainstem neurons and glia in freely behaving rodents. • Our refined method of GRIN lenses implantation and cell sorting approach gives the highest number of cells with the least postoperative complications. • The revised deep brainstem imaging method paves way to understand complex behaviours such as cardiorespiratory regulation, sleep, swallowing, and digestion. • Our protocol can be implemented to image cerebellar structures to understand their role in key functions such as balance, movement, motor learning, and more.

8.
Elife ; 112022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36300918

RESUMEN

Regulation of systemic PCO2 is a life-preserving homeostatic mechanism. In the medulla oblongata, the retrotrapezoid nucleus (RTN) and rostral medullary Raphe are proposed as CO2 chemosensory nuclei mediating adaptive respiratory changes. Hypercapnia also induces active expiration, an adaptive change thought to be controlled by the lateral parafacial region (pFL). Here, we use GCaMP6 expression and head-mounted mini-microscopes to image Ca2+ activity in these nuclei in awake adult mice during hypercapnia. Activity in the pFL supports its role as a homogenous neuronal population that drives active expiration. Our data show that chemosensory responses in the RTN and Raphe differ in their temporal characteristics and sensitivity to CO2, raising the possibility these nuclei act in a coordinated way to generate adaptive ventilatory responses to hypercapnia. Our analysis revises the understanding of chemosensory control in awake adult mouse and paves the way to understanding how breathing is coordinated with complex non-ventilatory behaviours.


Asunto(s)
Dióxido de Carbono , Hipercapnia , Ratones , Animales , Hipercapnia/metabolismo , Dióxido de Carbono/metabolismo , Bulbo Raquídeo/fisiología , Tronco Encefálico/fisiología , Respiración
9.
Front Aging Neurosci ; 14: 861344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847678

RESUMEN

Sleep apnoea is a highly prevalent disease that often goes undetected and is associated with poor clinical prognosis, especially as it exacerbates many different disease states. However, most animal models of sleep apnoea (e.g., intermittent hypoxia) have recently been dispelled as physiologically unrealistic and are often unduly severe. Owing to a lack of appropriate models, little is known about the causative link between sleep apnoea and its comorbidities. To overcome these problems, we have created a more realistic animal model of moderate sleep apnoea by reducing the excitability of the respiratory network. This has been achieved through controlled genetically mediated lesions of the preBötzinger complex (preBötC), the inspiratory oscillator. This novel model shows increases in sleep disordered breathing with alterations in breathing during wakefulness (decreased frequency and increased tidal volume) as observed clinically. The increase in dyspnoeic episodes leads to reduction in REM sleep, with all lost active sleep being spent in the awake state. The increase in hypoxic and hypercapnic insults induces both systemic and neural inflammation. Alterations in neurophysiology, an inhibition of hippocampal long-term potentiation (LTP), is reflected in deficits in both long- and short-term spatial memory. This improved model of moderate sleep apnoea may be the key to understanding why this disorder has such far-reaching and often fatal effects on end-organ function.

10.
Nat Commun ; 13(1): 4150, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851064

RESUMEN

The development of therapeutic agonists for G protein-coupled receptors (GPCRs) is hampered by the propensity of GPCRs to couple to multiple intracellular signalling pathways. This promiscuous coupling leads to numerous downstream cellular effects, some of which are therapeutically undesirable. This is especially the case for adenosine A1 receptors (A1Rs) whose clinical potential is undermined by the sedation and cardiorespiratory depression caused by conventional agonists. We have discovered that the A1R-selective agonist, benzyloxy-cyclopentyladenosine (BnOCPA), is a potent and powerful analgesic but does not cause sedation, bradycardia, hypotension or respiratory depression. This unprecedented discrimination between native A1Rs arises from BnOCPA's unique and exquisitely selective activation of Gob among the six Gαi/o subtypes, and in the absence of ß-arrestin recruitment. BnOCPA thus demonstrates a highly-specific Gα-selective activation of the native A1R, sheds new light on GPCR signalling, and reveals new possibilities for the development of novel therapeutics based on the far-reaching concept of selective Gα agonism.


Asunto(s)
Analgesia , Depresión , Adenosina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1
11.
J Physiol ; 589(Pt 23): 5561-79, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22005672

RESUMEN

The field of CO(2) chemosensitivity has developed considerably in recent years. There has been a mounting number of competing nuclei proposed as chemosensitive along with an ever increasing list of potential chemosensory transducing molecules. Is it really possible that all of these areas and candidate molecules are involved in the detection of chemosensory stimuli? How do we discriminate rigorously between molecules that are chemosensory transducers at the head of a physiological reflex versus those that just happen to display sensitivity to a chemosensory stimulus? Equally, how do we differentiate between nuclei that have a primary chemosensory function, versus those that are relays in the pathway? We have approached these questions by proposing rigorous definitions for the different components of the chemosensory reflex, going from the salient molecules and ions, through the components of transduction to the identity of chemosensitive cells and chemosensitive nuclei. Our definitions include practical and rigorous experimental tests that can be used to establish the identity of these components. We begin by describing the need for central CO(2) chemosensitivity and the problems that the field has faced. By comparing chemosensory mechanisms to those in the visual system we suggest stricter definitions for the components of the chemosensory pathway. We then, considering these definitions, re-evaluate current knowledge of chemosensory transduction, and propose the 'multiple salient signal hypothesis' as a framework for understanding the multiplicity of transduction mechanisms and brain areas seemingly involved in chemosensitivity.


Asunto(s)
Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/fisiología , Transducción de Señal/fisiología , Animales , Encéfalo/fisiología , Humanos , Respiración
12.
Pflugers Arch ; 461(3): 337-44, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21234597

RESUMEN

CO(2) chemosensing is a vital function for the maintenance of life that helps to control acid-base balance. Most studies have reported that CO(2) is measured via its proxy, pH. Here we report an inwardly rectifying channel, in outside-out excised patches from HeLa cells that was sensitive to modest changes in PCO(2) under conditions of constant extracellular pH. As PCO(2) increased, the open probability of the channel increased. The single-channel currents had a conductance of 6.7 pS and a reversal potential of -70 mV, which lay between the K(+) and Cl(-) equilibrium potentials. This reversal potential was shifted by +61 mV following a tenfold increase in extracellular [K(+)] but was insensitive to variations of extracellular [Cl(-)]. The single-channel conductance increased with extracellular [K(+)]. We propose that this channel is a member of the Kir family. In addition to this K(+) channel, we found that many of the excised patches also contained a conductance carried via a Cl(-)-selective channel. This CO(2)-sensitive Kir channel may hyperpolarize excitable cells and provides a potential mechanism for CO(2)-dependent inhibition during hypercapnia.


Asunto(s)
Dióxido de Carbono/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Equilibrio Ácido-Base , Células HeLa , Humanos , Presión Parcial , Técnicas de Placa-Clamp
13.
Ann Appl Stat ; 15(3): 1171-1193, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34616500

RESUMEN

We propose to model time-varying periodic and oscillatory processes by means of a hidden Markov model where the states are defined through the spectral properties of a periodic regime. The number of states is unknown along with the relevant periodicities, the role and number of which may vary across states. We address this inference problem by a Bayesian nonparametric hidden Markov model assuming a sticky hierarchical Dirichlet process for the switching dynamics between different states while the periodicities characterizing each state are explored by means of a trans-dimensional Markov chain Monte Carlo sampling step. We develop the full Bayesian inference algorithm and illustrate the use of our proposed methodology for different simulation studies as well as an application related to respiratory research which focuses on the detection of apnea instances in human breathing traces.

14.
Nat Commun ; 12(1): 3771, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226548

RESUMEN

3D printing has emerged as one of the most promising tools to overcome the processing and morphological limitations of traditional tissue engineering scaffold design. However, there is a need for improved minimally invasive, void-filling materials to provide mechanical support, biocompatibility, and surface erosion characteristics to ensure consistent tissue support during the healing process. Herein, soft, elastomeric aliphatic polycarbonate-based materials were designed to undergo photopolymerization into supportive soft tissue engineering scaffolds. The 4D nature of the printed scaffolds is manifested in their shape memory properties, which allows them to fill model soft tissue voids without deforming the surrounding material. In vivo, adipocyte lobules were found to infiltrate the surface-eroding scaffold within 2 months, and neovascularization was observed over the same time. Notably, reduced collagen capsule thickness indicates that these scaffolds are highly promising for adipose tissue engineering and repair.


Asunto(s)
Tejido Adiposo/citología , Elasticidad , Cemento de Policarboxilato/química , Impresión Tridimensional/normas , Estereolitografía/normas , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Tejido Adiposo/fisiología , Animales , Células Cultivadas , Masculino , Polímeros , Porosidad , Ratas
15.
J Physiol ; 588(Pt 20): 3921-31, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20736419

RESUMEN

We have previously shown connexin mediated CO(2)-dependent ATP release from the surface of the medulla oblongata. Given the localization of connexin 26 (Cx26) to the chemosensing areas of the medulla, we have tested in a heterologous expression system (HeLa cells) whether Cx26 may be sensitive to changes in PCO2. Cx26 responded to an increase in PCO2 at constant extracellular pH by opening and to a decrease in PCO2 by closing. Furthermore, Cx26 was partially activated at a physiological PCO2 of around 40 mmHg. Cx26 in isolated patches responded to changes in PCO2, suggesting direct CO(2) sensitivity of the hemichannel to CO(2). Heterologous expression of Cx26 in HeLa cells was sufficient to endow them with the capacity to release ATP in a CO(2)-sensitive manner. We have examined other heterologously expressed connexins for their ability to respond to changes in PCO2. The closely related ß connexins Cx30 and Cx32 also displayed sensitivity to changes in PCO2, but with slightly different characteristics from Cx26. The more distant Cx43 exhibited CO(2)-dependent closing (possibly mediated through intracellular acidification), while Cx36 displayed no CO(2) sensitivity. These surprising findings suggest that connexins may play a hitherto unappreciated variety of signalling roles, and that Cx26 and related ß connexins may impart direct sensitivity to CO(2) throughout the brain.


Asunto(s)
Adenosina Trifosfato/metabolismo , Dióxido de Carbono/metabolismo , Conexinas/metabolismo , Transducción de Señal/fisiología , Células Cultivadas , Conexina 26 , Uniones Comunicantes/metabolismo , Células HeLa , Humanos , Inmunohistoquímica , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
J Physiol ; 588(Pt 20): 3901-20, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20736421

RESUMEN

Arterial PCO2, a major determinant of breathing, is detected by chemosensors located in the brainstem. These are important for maintaining physiological levels of PCO2 in the blood and brain, yet the mechanisms by which the brain senses CO(2) remain controversial. As ATP release at the ventral surface of the brainstem has been causally linked to the adaptive changes in ventilation in response to hypercapnia, we have studied the mechanisms of CO(2)-dependent ATP release in slices containing the ventral surface of the medulla oblongata. We found that CO(2)-dependent ATP release occurs in the absence of extracellular acidification and correlates directly with the level of PCO2. ATP release is independent of extracellular Ca(2+) and may occur via the opening of a gap junction hemichannel. As agents that act on connexin channels block this release, but compounds selective for pannexin-1 have no effect, we conclude that a connexin hemichannel is involved in CO(2)-dependent ATP release. We have used molecular, genetic and immunocytochemical techniques to demonstrate that in the medulla oblongata connexin 26 (Cx26) is preferentially expressed near the ventral surface. The leptomeninges, subpial astrocytes and astrocytes ensheathing penetrating blood vessels at the ventral surface of the medulla can be loaded with dye in a CO(2)-dependent manner, suggesting that gating of a hemichannel is involved in ATP release. This distribution of CO(2)-dependent dye loading closely mirrors that of Cx26 expression and colocalizes to glial fibrillary acidic protein (GFAP)-positive cells. In vivo, blockers with selectivity for Cx26 reduce hypercapnia-evoked ATP release and the consequent adaptive enhancement of breathing. We therefore propose that Cx26-mediated release of ATP in response to changes in PCO2 is an important mechanism contributing to central respiratory chemosensitivity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Dióxido de Carbono/metabolismo , Conexinas/metabolismo , Bulbo Raquídeo/metabolismo , Análisis de Varianza , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Conexina 26 , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley , Respiración , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Commun Biol ; 3(1): 521, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958814

RESUMEN

Breathing is highly sensitive to the PCO2 of arterial blood. Although CO2 is detected via the proxy of pH, CO2 acting directly via Cx26 may also contribute to the regulation of breathing. Here we exploit our knowledge of the structural motif of CO2-binding to Cx26 to devise a dominant negative subunit (Cx26DN) that removes the CO2-sensitivity from endogenously expressed wild type Cx26. Expression of Cx26DN in glial cells of a circumscribed region of the mouse medulla - the caudal parapyramidal area - reduced the adaptive change in tidal volume and minute ventilation by approximately 30% at 6% inspired CO2. As central chemosensors mediate about 70% of the total response to hypercapnia, CO2-sensing via Cx26 in the caudal parapyramidal area contributed about 45% of the centrally-mediated ventilatory response to CO2. Our data unequivocally link the direct sensing of CO2 to the chemosensory control of breathing and demonstrates that CO2-binding to Cx26 is a key transduction step in this fundamental process.


Asunto(s)
Dióxido de Carbono/metabolismo , Conexina 26/fisiología , Bulbo Raquídeo/fisiología , Neuroglía/fisiología , Respiración , Animales , Conexina 26/metabolismo , Femenino , Células HeLa , Humanos , Hipercapnia/metabolismo , Masculino , Bulbo Raquídeo/citología , Bulbo Raquídeo/metabolismo , Ratones , Neuroglía/metabolismo
18.
Nat Commun ; 11(1): 3250, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591525

RESUMEN

Biocompatible polymers are widely used in tissue engineering and biomedical device applications. However, few biomaterials are suitable for use as long-term implants and these examples usually possess limited property scope, can be difficult to process, and are non-responsive to external stimuli. Here, we report a class of easily processable polyamides with stereocontrolled mechanical properties and high-fidelity shape memory behaviour. We synthesise these materials using the efficient nucleophilic thiol-yne reaction between a dipropiolamide and dithiol to yield an α,ß - unsaturated carbonyl moiety along the polymer backbone. By rationally exploiting reaction conditions, the alkene stereochemistry is modulated between 35-82% cis content and the stereochemistry dictates the bulk material properties such as tensile strength, modulus, and glass transition. Further access to materials possessing a broader range of thermal and mechanical properties is accomplished by polymerising a variety of commercially available dithiols with the dipropiolamide monomer.


Asunto(s)
Elastómeros/química , Fenómenos Mecánicos , Nylons/química , Materiales Inteligentes/química , Animales , Materiales Biocompatibles/farmacología , Rastreo Diferencial de Calorimetría , Línea Celular , Masculino , Ensayo de Materiales , Ratones , Nylons/síntesis química , Polimerizacion , Ratas Sprague-Dawley , Estrés Mecánico , Compuestos de Sulfhidrilo/química , Temperatura
19.
J Am Stat Assoc ; 115(531): 1320-1335, 2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-33814652

RESUMEN

We propose a novel Bayesian methodology for analyzing nonstationary time series that exhibit oscillatory behavior. We approximate the time series using a piecewise oscillatory model with unknown periodicities, where our goal is to estimate the change-points while simultaneously identifying the potentially changing periodicities in the data. Our proposed methodology is based on a trans-dimensional Markov chain Monte Carlo algorithm that simultaneously updates the change-points and the periodicities relevant to any segment between them. We show that the proposed methodology successfully identifies time changing oscillatory behavior in two applications which are relevant to e-Health and sleep research, namely the occurrence of ultradian oscillations in human skin temperature during the time of night rest, and the detection of instances of sleep apnea in plethysmographic respiratory traces. Supplementary materials for this article are available online.

20.
Redox Biol ; 21: 101077, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30593979

RESUMEN

Genes that are highly conserved in food seeking behaviour, such as protein kinase G (PKG), are of interest because of their potential role in the global obesity epidemic. PKG1α can be activated by binding of cyclic guanosine monophosphate (cGMP) or oxidant-induced interprotein disulfide bond formation between the two subunits of this homodimeric kinase. PKG1α activation by cGMP plays a role in reward and addiction through its actions in the ventral tegmental area (VTA) of the brain. 'Redox dead' C42S PKG1α knock-in (KI) mice, which are fully deficient in oxidant-induced disulfide-PKG1α formation, display increased food seeking and reward behaviour compared to wild-type (WT) littermates. Rewarding monoamines such as dopamine, which are released during feeding, are metabolised by monoamine oxidase to generate hydrogen peroxide that was shown to mediate PKG1α oxidation. Indeed, inhibition of monoamine oxidase, which prevents it producing hydrogen peroxide, attenuated PKG1α oxidation and increased sucrose preference in WT, but not KI mice. The deficient reward phenotype of the KI mice was rescued by expressing WT kinase that can form the disulfide state in the VTA using an adeno-associated virus, consistent with PKG1α oxidation providing a break on feeding behaviour. In conclusion, disulfide-PKG1α in VTA neurons acts as a negative regulator of feeding and therefore may provide a novel therapeutic target for obesity.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Conducta Alimentaria , Oxidación-Reducción , Recompensa , Animales , Conducta Animal , Disulfuros/metabolismo , Dopamina/metabolismo , Dopamina/farmacología , Activación Enzimática/efectos de los fármacos , Femenino , Levodopa/metabolismo , Levodopa/farmacología , Masculino , Ratones , Ratones Noqueados , Monoaminooxidasa/metabolismo , Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda