Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Cell Biol ; 127(6 Pt 2): 1973-84, 1994 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-7806575

RESUMEN

We have isolated a cold-sensitive allele of TUB2, the sole gene encoding beta-tubulin in S. cerevisiae, that confers a specific defect in spindle microtubule function. At 14 degrees C, tub2-406 cells lack a normal bipolar spindle but do assemble functional cytoplasmic microtubules. In an attempt to identify proteins that are important for spindle assembly, we screened for suppressors of the cold-sensitivity of tub2-406 and obtained four alleles of a novel gene, STU1. Genetic interactions between stu1 alleles and alleles of TUB1 and TUB2 suggest that Stu1p specifically interacts with microtubules. STU1 is essential for growth and disruption of STU1 causes defects in spindle assembly that are similar to those produced by the tub2-406 mutation. The nucleotide sequence of the STU1 gene predicts a protein product of 174 kD with no significant similarity to known proteins. An epitope-tagged Stulp colocalizes with microtubules in the mitotic spindle of yeast. These results demonstrate that Stulp is an essential component of the yeast mitotic spindle.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crecimiento & desarrollo , Huso Acromático/química , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Frío , Técnica del Anticuerpo Fluorescente , Genes Fúngicos , Proteínas Asociadas a Microtúbulos/inmunología , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Análisis de Secuencia de ADN , Huso Acromático/fisiología , Huso Acromático/ultraestructura , Supresión Genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
2.
J Cell Biol ; 106(6): 1997-2010, 1988 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-3290223

RESUMEN

We have used in vitro mutagenesis and gene replacement to construct five new cold-sensitive mutations in TUB2, the sole gene encoding beta-tubulin in the yeast Saccharomyces cerevisiae. These and one previously isolated tub2 mutant display diverse phenotypes that have allowed us to define the functions of yeast microtubules in vivo. At the restrictive temperature, all of the tub2 mutations inhibit chromosome segregation and block the mitotic cell cycle. However, different microtubule arrays are present in these arrested cells depending on the tub2 allele. One mutant (tub2-401) contains no detectable microtubules, two (tub2-403 and tub2-405) contain greatly diminished levels of both nuclear and cytoplasmic microtubules, one (tub2-104) contains predominantly nuclear microtubules, one (tub2-402) contains predominantly cytoplasmic microtubules, and one (tub2-404) contains prominent nuclear and cytoplasmic microtubule arrays. Using these mutants we demonstrate here that cytoplasmic microtubules are necessary for nuclear migration during the mitotic cell cycle and for nuclear migration and fusion during conjugation; only those mutants that possess cytoplasmic microtubules are able to perform these functions. We also show that microtubules are not required for secretory vesicle transport in yeast; bud growth and invertase secretion occur in cells which contain no microtubules.


Asunto(s)
Ciclo Celular , Microtúbulos/fisiología , Tubulina (Proteína)/genética , Secuencia de Aminoácidos , Benomilo/farmacología , Núcleo Celular/fisiología , Cromosomas/fisiología , Frío , Conjugación Genética , Gránulos Citoplasmáticos/fisiología , Citoesqueleto/fisiología , Análisis Mutacional de ADN , Meiosis , Mitosis , Datos de Secuencia Molecular , Movimiento , Recombinación Genética , Saccharomyces cerevisiae , Esporas Fúngicas/fisiología , Relación Estructura-Actividad
3.
J Cell Biol ; 119(2): 379-88, 1992 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-1400581

RESUMEN

tub2-401 is a cold-sensitive allele of TUB2, the sole gene encoding beta-tubulin in the yeast, Saccharomyces cerevisiae. At 18 degrees C, tub2-401 cells are able to assemble spindle microtubules but lack astral microtubules. Under these conditions, movement of the spindle to the bud neck is blocked. However, spindle elongation and chromosome separation are unimpeded and occur entirely within the mother cell. Subsequent cytokinesis produces one cell with two nuclei and one cell without a nucleus. The anucleate daughter can not bud. The binucleate daughter proceeds through another cell cycle to produce a cell with four nuclei and another anucleate cell. With additional time in the cold, the number of nuclei in the nucleated cells continues to increase and the percentage of anucleate cells in the population rises. The results indicate that astral microtubules are needed to position the spindle in the bud neck but are not required for spindle elongation at anaphase B. In addition, cell cycle progression does not depend on the location or orientation of the spindle.


Asunto(s)
Anafase/fisiología , Microtúbulos/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Huso Acromático/fisiología , Tubulina (Proteína)/fisiología , División Celular , Núcleo Celular/fisiología , Replicación del ADN , Mutación , Tubulina (Proteína)/análisis , Tubulina (Proteína)/genética
4.
J Cell Biol ; 139(5): 1271-80, 1997 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-9382872

RESUMEN

Previously we isolated tub2-423, a cold-sensitive allele of the Saccharomyces cerevisiae gene encoding beta-tubulin that confers a defect in mitotic spindle function. In an attempt to identify additional proteins that are important for spindle function, we screened for suppressors of the cold sensitivity of tub2-423 and obtained two alleles of a novel gene, STU2. STU2 is an essential gene and encodes a protein whose sequence is similar to proteins identified in a variety of organisms. Stu2p localizes primarily to the spindle pole body (SPB) and to a lesser extent along spindle microtubules. Localization to the SPB is not dependent on the presence of microtubules, indicating that Stu2p is an integral component of the SPB. Stu2p also binds microtubules in vitro. We have localized the microtubule-binding domain of Stu2p to a highly basic 100-amino acid region. This region contains two imperfect repeats; both repeats appear to contribute to microtubule binding to similar extents. These results suggest that Stu2p may play a role in the attachment, organization, and/or dynamics of microtubule ends at the SPB.


Asunto(s)
Centrosoma/química , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Huso Acromático/química , Alelos , Secuencia de Aminoácidos , Sitios de Unión , Centrosoma/metabolismo , Clonación Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genes Letales , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/aislamiento & purificación , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes de Fusión/aislamiento & purificación , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Huso Acromático/metabolismo , Supresión Genética
5.
J Cell Biol ; 141(5): 1169-79, 1998 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-9606209

RESUMEN

We have previously shown that Stu2p is a microtubule-binding protein and a component of the Saccharomyces cerevisiae spindle pole body (SPB). Here we report the identification of Spc72p, a protein that interacts with Stu2p. Stu2p and Spc72p associate in the two-hybrid system and can be coimmunoprecipitated from yeast extracts. Stu2p and Spc72p also interact with themselves, suggesting the possibility of a multimeric Stu2p-Spc72p complex. Spc72p is an essential component of the SPB and is able to associate with a preexisting SPB, indicating that there is a dynamic exchange between soluble and SPB forms of Spc72p. Unlike Stu2p, Spc72p does not bind microtubules in vitro, and was not observed to localize along microtubules in vivo. A temperature-sensitive spc72 mutation causes defects in SPB morphology. In addition, most spc72 mutant cells lack cytoplasmic microtubules; the few cytoplasmic microtubules that are observed are excessively long, and some of these are unattached to the SPB. spc72 cells are able to duplicate and separate their SPBs to form a bipolar spindle, but spindle elongation and chromosome segregation rarely occur. The chromosome segregation block does not arrest the cell cycle; instead, spc72 cells undergo cytokinesis, producing aploid cells and polyploid cells that contain multiple SPBs.


Asunto(s)
Centrosoma/fisiología , Proteínas Fúngicas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Proteínas de Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Microtúbulos/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo
6.
J Cell Biol ; 155(7): 1137-45, 2001 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-11756468

RESUMEN

Dam1p, Duo1p, and Dad1p can associate with each other physically and are required for both spindle integrity and kinetochore function in budding yeast. Here, we present our purification from yeast extracts of an approximately 245 kD complex containing Dam1p, Duo1p, and Dad1p and Spc19p, Spc34p, and the previously uncharacterized proteins Dad2p and Ask1p. This Dam1p complex appears to be regulated through the phosphorylation of multiple subunits with at least one phosphorylation event changing during the cell cycle. We also find that purified Dam1p complex binds directly to microtubules in vitro with an affinity of approximately 0.5 microM. To demonstrate that subunits of the Dam1p complex are functionally important for mitosis in vivo, we localized Spc19-green fluorescent protein (GFP), Spc34-GFP, Dad2-GFP, and Ask1-GFP to the mitotic spindle and to kinetochores and generated temperature-sensitive mutants of DAD2 and ASK1. These and other analyses implicate the four newly identified subunits and the Dam1p complex as a whole in outer kinetochore function where they are well positioned to facilitate the association of chromosomes with spindle microtubules.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/fisiología , Cinetocoros/fisiología , Proteínas de Neoplasias/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Antígenos de Neoplasias , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Genotipo , Proteínas Fluorescentes Verdes , Cinetocoros/ultraestructura , Proteínas Luminiscentes/análisis , Sustancias Macromoleculares , Espectrometría de Masas , Microtúbulos/metabolismo , Complejos Multiproteicos , Mutación , Proteínas de Neoplasias/fisiología , Fosforilación , Unión Proteica , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/ultraestructura , Huso Acromático/ultraestructura
7.
Mol Cell Biol ; 17(10): 6114-21, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9315671

RESUMEN

Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex.


Asunto(s)
Genes Fúngicos/genética , Ribonucleósido Difosfato Reductasa/genética , Ribonucleótido Reductasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Clonación Molecular , Frío , Inhibidores Enzimáticos/farmacología , Dosificación de Gen , Regulación Fúngica de la Expresión Génica/fisiología , Genes Fúngicos/fisiología , Hidroxiurea/farmacología , Metilmetanosulfonato/farmacología , Datos de Secuencia Molecular , Mutágenos/farmacología , Mutación , Fenotipo , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , Ribonucleósido Difosfato Reductasa/antagonistas & inhibidores , Ribonucleótido Reductasas/antagonistas & inhibidores , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Homología de Secuencia de Aminoácido
8.
Mol Biol Cell ; 5(1): 29-43, 1994 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8186463

RESUMEN

A systematic strategy was used to create a synoptic set of mutations that are distributed throughout the single beta-tubulin gene of Saccharomyces cerevisiae. Clusters of charged amino acids were targeted for mutagenesis and converted to alanine to maximize alterations on the protein's surface and minimize alterations that affect protein folding. Of the 55 mutations we constructed, three confer dominant-lethality, 11 confer recessive-lethality, 10 confer cold-sensitivity, one confers heat-sensitivity, and 27 confer altered resistance to benomyl. Only 11 alleles give no discernible phenotype. In spite of the fact that beta-tubulin is a highly conserved protein, three-fourths of the mutations do not destroy the ability of the protein to support the growth of yeast at 30 degrees C. The lethal substitutions are primarily located in three regions of the protein and presumably identify domains most critical for beta-tubulin function. Interestingly, most of the conditional-lethal alleles produce specific defects in spindle assembly at their restrictive temperature; cytoplasmic microtubules are relatively unaffected. The exceptions are two mutants that contain abnormally long cytoplasmic microtubules. Mutants with specific spindle defects were not observed in our previous collection of beta-tubulin mutants and should be valuable in dissecting spindle function.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Mutagénesis Sitio-Dirigida , Saccharomyces cerevisiae/genética , Tubulina (Proteína)/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Benomilo/farmacología , Frío , Farmacorresistencia Microbiana/genética , Genes Dominantes , Genes Letales , Genes Recesivos , Calor , Microtúbulos/ultraestructura , Datos de Secuencia Molecular , Fenotipo , Pliegue de Proteína , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Huso Acromático/ultraestructura
9.
Mol Biol Cell ; 12(9): 2870-80, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11553724

RESUMEN

Stu2p is a member of a conserved family of microtubule-binding proteins and an essential protein in yeast. Here, we report the first in vivo analysis of microtubule dynamics in cells lacking a member of this protein family. For these studies, we have used a conditional Stu2p depletion strain expressing alpha-tubulin fused to green fluorescent protein. Depletion of Stu2p leads to fewer and less dynamic cytoplasmic microtubules in both G1 and preanaphase cells. The reduction in cytoplasmic microtubule dynamics is due primarily to decreases in both the catastrophe and rescue frequencies and an increase in the fraction of time microtubules spend pausing. These changes have significant consequences for the cell because they impede the ability of cytoplasmic microtubules to orient the spindle. In addition, recovery of fluorescence after photobleaching indicates that kinetochore microtubules are no longer dynamic in the absence of Stu2p. This deficiency is correlated with a failure to properly align chromosomes at metaphase. Overall, we provide evidence that Stu2p promotes the dynamics of microtubule plus-ends in vivo and that these dynamics are critical for microtubule interactions with kinetochores and cortical sites in the cytoplasm.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Metafase/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Saccharomyces cerevisiae , Huso Acromático/metabolismo , Animales , Western Blotting , Segregación Cromosómica , Eliminación de Gen , Cinetocoros/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Mitosis/genética , Fenotipo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/metabolismo
10.
Genetics ; 147(2): 409-20, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9335582

RESUMEN

We have isolated a new conditional-lethal mutation, ndc10-2, in the NDC10/CBF2/CTF14 gene that encodes the 110-kD subunit of the Saccharomyces cerevisiae CBF3 kinetochore complex. At the restrictive temperature of 37 degrees, ndc10-2 cells are able to assemble anaphase spindles, but fail to segregate their DNA, consistent with a defect in kinetochore function. To identify other factors that play a role in kinetochore assembly or function, we isolated both dosage and second site suppressors of the ndc10-2 mutation. These screens identified UBC6 as a dosage suppressor, and mutations in UBC6 and UBC7 as second-site suppressors of ndc10-2 heat sensitivity. Both UBC6 and UBC7 encode ubiquitin-conjugating enzymes that function in ubiquitin-mediated protein degradation. Furthermore, overexpression of a mutant ubiquitin suppresses the ndc10-2 mutation. These results implicate the ubiquitin system in the regulation of ndc10-2 function and suggest a role for the ubiquitin system in kinetochore function.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Genes Supresores , Cinetocoros/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa , Ubiquitinas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Clonación Molecular , Dosificación de Gen , Genes Letales , Calor , Ligasas/genética , Fenotipo , Ubiquitina-Proteína Ligasas
11.
Genetics ; 135(4): 955-62, 1993 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8307335

RESUMEN

rts1-1 was identified as an extragenic suppressor of tub2-104, a cold-sensitive allele of the sole gene encoding beta-tubulin in the yeast, Saccharomyces cerevisiae. In addition, rts1-1 cells are heat sensitive and resistant to the microtubule-destabilizing drug, benomyl. The rts1-1 mutation is a deletion of approximately 5 kb of genomic DNA on chromosome X that includes one open reading frame and three tRNA genes. Dissection of this region shows that heat sensitivity is due to deletion of the open reading frame (HIT1). Suppression and benomyl resistance are caused by deletion of the gene encoding a tRNA(Arg)AGG (HSX1). Northern analysis of rts1-1 cells indicates that HSX1 is the only gene encoding this tRNA. Deletion of HSX1 does not suppress the tub2-104 mutation by misreading at the AGG codons in TUB2. It also does not suppress by interfering with the protein arginylation that targets certain proteins for degradation. These results leave open the prospect that this tRNA(Arg)AGG plays a novel role in the cell.


Asunto(s)
Eliminación de Gen , Microtúbulos/fisiología , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Alelos , Secuencia de Bases , Codón , Cartilla de ADN , Genes Fúngicos , Datos de Secuencia Molecular , Fenotipo , Saccharomyces cerevisiae/ultraestructura , Supresión Genética
14.
Proc Natl Acad Sci U S A ; 80(24): 7466-70, 1983 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-6369318

RESUMEN

The synthesis of asparagine-linked oligosaccharides involves the formation of a lipid-linked precursor oligosaccharide that has the composition Glc3Man9GlcNAc2. We have used a [3H]mannose suicide selection to obtain mutants in yeast that are blocked in the synthesis of this precursor oligosaccharide. The alg1 mutant accumulated lipid-linked GlcNAc2, alg2 mutants accumulated Man1-2GlcNAc2, alg3 mutants accumulated Man5GlcNAc2, alg4 mutants accumulated Man1-8GlcNAc2, and alg5 and alg6 mutants accumulated Man9GlcNAc2. Some of these mutants appeared to transfer oligosaccharides other than Glc3Man9GlcNAc2 from the lipid carrier to invertase. These aberrant protein-linked oligosaccharides were processed by the addition of outer chain residues in the alg3, alg5, and alg6 mutants. There was virtually no outer chain addition in the alg2 and alg4 mutants. alg4 was the only mutant that failed to secrete invertase.


Asunto(s)
Asparagina/genética , Glicoproteínas/genética , Mutación , Oligosacáridos/genética , Saccharomyces cerevisiae/genética , Alelos , Asparagina/aislamiento & purificación , Prueba de Complementación Genética , Glicósido Hidrolasas/genética , Oligosacáridos/aislamiento & purificación , Procesamiento Proteico-Postraduccional , beta-Fructofuranosidasa
15.
J Biol Chem ; 257(6): 3203-10, 1982 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-7037780

RESUMEN

A [3H]mannose suicide selection has been used to isolate mutants in yeast which contain temperature-sensitive defects in asparagine-linked glycosylation. The surviving cells were screened at the nonpermissive temperature for a decreased ability to incorporate [3H]mannose and for defects in glycosylation of the secreted protein invertase. One of these mutants (alg1-1) has been characterized and found to be blocked in the assembly of the lipid-linked oligosaccharide precursor. The alg1-1 cells synthesize mannosyl compounds at 60% of the wild type level at the nonpermissive temperature and 105% of the wild type level at the permissive temperature. In vivo labeling experiments have demonstrated that alg1-1 cells are able to synthesize GlcNAc2-lipid but are unable to synthesize any mannose-containing oligosaccharide-lipids. This result was confirmed by in vitro labeling of yeast membranes. When incubated with UDP-[3H]GlcNAc, alg1-1 membranes synthesized GlcNAc2-lipid but failed to elongate it when GDP-Man was added. The alg1-1 membranes also failed to elongate exogenous GlcNAc2-lipid but were able to convert Man1GlcNAc2-lipid to Man5-Glc-NAc2-lipid in the presence of GDP-Man. These results indicate that the alg1-1 mutant is blocked specifically in the addition of the first mannose residue to the lipid-linked oligosaccharide precursor.


Asunto(s)
Asparagina/metabolismo , Glicopéptidos/biosíntesis , Mutación , Saccharomyces cerevisiae/genética , Conformación de Carbohidratos , Secuencia de Carbohidratos , Glicósidos/biosíntesis , Manosa/metabolismo , Metionina/metabolismo , Oligosacáridos/biosíntesis , Saccharomyces cerevisiae/metabolismo
16.
Nature ; 406(6799): 1013-5, 2000 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-10984058

RESUMEN

Coordination of spindle orientation with the axis of cell division is an essential process in all eukaryotes. In addition to ensuring accurate chromosomal segregation, proper spindle orientation also establishes differential cell fates and proper morphogenesis. In both animal and yeast cells, this process is dependent on cytoplasmic microtubules interacting with the cortical actin-based cytoskeleton, although the motive force was unknown. Here we show that yeast Myo2, a myosin V that translocates along polarized actin cables into the bud, orientates the spindle early in the cell cycle by binding and polarizing the microtubule-associated protein Kar9 (refs 7-9). The tail domain of Myo2 that binds Kar9 also interacts with secretory vesicles and vacuolar elements, making it a pivotal component of yeast cell polarization.


Asunto(s)
Proteínas Portadoras/fisiología , Cadenas Pesadas de Miosina , Miosina Tipo II , Miosina Tipo V , Miosinas/fisiología , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Huso Acromático/fisiología , Actinas/metabolismo , Proteínas Portadoras/metabolismo , Ciclo Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Saccharomycetales , Técnicas del Sistema de Dos Híbridos
17.
J Biol Chem ; 259(1): 412-7, 1984 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-6423630

RESUMEN

Two complementing mutations in lipid-linked oligosaccharide biosynthesis have been isolated following a [3H]mannose suicide enrichment. Rather than making the wild type precursor oligosaccharide, Glc3man9Glc-NA2-P-P-dolichol, the mutants, alg5-1 and alg6-1, accumulate Man9GlcNAc2-P-P-dolichol as their largest lipid-linked oligosaccharide in vivo and in vitro. When UDP-[3H]Glc was added to microsomal membranes of each mutant, neither could elongate Man9GlcNAc2-P-P-dolichol and only alg6-1 could synthesize dolichol-phosphoglucose. When dolicholphospho[3H]glucose was added to microsomes from alg5-1, alg6-1, or the parental strain, only alg5-1 and the parental strain made glucosylated lipid-linked oligosaccharides. These results indicate that alg5-1 cells are unable to synthesize dolichol phosphoglucose while alg6-1 cells are unable to transfer glucose from dolichol phosphoglucose to the unglucosylated lipid-linked oligosaccharide. We also present evidence that both mutants transfer Man9GlcNAc2 to protein.


Asunto(s)
Asparagina/metabolismo , Mutación , Oligosacáridos de Poliisoprenil Fosfato/biosíntesis , Azúcares de Poliisoprenil Fosfato/biosíntesis , Saccharomyces cerevisiae/genética , Acetilglucosaminidasa/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa , Monosacáridos de Poliisoprenil Fosfato/metabolismo
18.
Proc Natl Acad Sci U S A ; 91(19): 9111-5, 1994 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-7916460

RESUMEN

We have isolated cold-sensitive mutations in two genes of the yeast Saccharomyces cerevisiae, BIN2 and BIN3, that cause aberrant chromosome segregation in vivo. BIN2 and BIN3 encode essential proteins that are similar to each other and to TCP-1. TCP-1 and TCP-1-like proteins are components of the eukaryotic cytoplasmic chaperonin that facilitates folding of tubulins and actin in vitro. Mutations in BIN2 and BIN3 cause defects in microtubule and actin assembly in vivo and confer supersensitivity to the microtubule-destabilizing drug benomyl. Overexpression of TCP1, BIN2, BIN3, or ANC2, a fourth member of the TCP-1 family in yeast, does not complement mutations in the other genes, indicating that the proteins have distinct functions. However, all double-mutant combinations are inviable; this synthetic lethality suggests that the proteins act in a common process. These results indicate that Bin2p and Bin3p are components of a yeast cytoplasmic chaperonin complex that is required for assembly of microtubules and actin in vivo.


Asunto(s)
Actinas/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Asociadas a Microtúbulos , Microtúbulos/fisiología , Proteínas Nucleares/genética , Proteínas/fisiología , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , División Celular , Chaperoninas , Clonación Molecular , Genes Fúngicos , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Insercional , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Huso Acromático/fisiología , Ubiquitina-Proteína Ligasas , Región del Complejo T del Genoma
19.
J Biol Chem ; 259(1): 378-82, 1984 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-6368538

RESUMEN

The yeast Saccharomyces cerevisiae temperature-sensitive lethal mutant alg1-1, has been previously shown to lack the activity necessary for the addition of the first mannose residue in the synthesis of lipid-linked precursor oligosaccharide. The gene ALG1 has been cloned by complementation of the temperature-sensitive mutation alg1-1 with a total genomic DNA library. The original DNA fragment isolated was 11,300 base pairs and has been subcloned to a 1,500-base pair fragment which is still capable of complementing alg1-1. The gene ALG1 has been mapped on chromosome II at a distance of 2.1 map units from LYS2. The ALG1 gene product has been shown to catalyze the transfer of a mannosyl residue from GDP-mannose to the lipid-linked acceptor GlcNAc2, yielding Man beta 1-4GlcNAc2-lipid, in lysates from Escherichia coli transformants. This result proves that ALG1 is the structural gene for the first mannosyltransferase in lipid-linked oligosaccharide assembly.


Asunto(s)
Asparagina , Clonación Molecular , Escherichia coli/genética , Hexosiltransferasas/genética , Manosiltransferasas/genética , Saccharomyces cerevisiae/enzimología , Mapeo Cromosómico , Genes , Mutación , Plásmidos , Saccharomyces cerevisiae/genética
20.
Philos Trans R Soc Lond B Biol Sci ; 300(1099): 207-23, 1982 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-6131459

RESUMEN

The formation of N-glycosidic linkages of eukaryotic glycoproteins involves the assembly of a specific lipid-linked precursor oligosaccharide in the endoplasmic reticulum. This oligosaccharide is transferred from the lipid carrier to appropriate asparagine residues during protein synthesis. The protein-linked oligosaccharide then undergoes processing reactions that include both removal and addition of carbohydrate residues. In this paper we report recent studies from our laboratory on the synthesis of asparagine-linked oligosaccharides. In the first part we describe the isolation and characterization of temperature-sensitive mutants of yeast blocked at specific stages in the assembly of the lipid-linked oligosaccharide. In addition, we are using these mutants to clone the genes for the enzymes in this pathway by complementation of the temperature-sensitive phenotype. The second part deals with the topography of asparagine-linked oligosaccharide assembly. Our studies on the transmembrane movement of sugar residues during the assembly of secreted glycoproteins from cytoplasmic precursors are presented. Finally, experiments on the control of protein-linked oligosaccharide processing are described. Recent data are presented on the problem of how specific oligosaccharides are assembled from the common precursors at individual sites on glycoproteins.


Asunto(s)
Glicoproteínas/biosíntesis , Oligosacáridos/metabolismo , Asparagina , Compartimento Celular , Fosfatos de Dolicol/metabolismo , Retículo Endoplásmico/metabolismo , Glicoproteínas/genética , Manosa/metabolismo , Metionina/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda