Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Neurosci ; 38(12): 3102-3115, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29463643

RESUMEN

Pain associates both sensory and emotional aversive components, and often leads to anxiety and depression when it becomes chronic. Here, we characterized, in a mouse model, the long-term development of these sensory and aversive components as well as anxiodepressive-like consequences of neuropathic pain and determined their electrophysiological impact on the anterior cingulate cortex (ACC, cortical areas 24a/24b). We show that these symptoms of neuropathic pain evolve and recover in different time courses following nerve injury in male mice. In vivo electrophysiological recordings evidence an increased firing rate and bursting activity within the ACC when anxiodepressive-like consequences developed, and this hyperactivity persists beyond the period of mechanical hypersensitivity. Whole-cell patch-clamp recordings also support ACC hyperactivity, as shown by increased excitatory postsynaptic transmission and contribution of NMDA receptors. Optogenetic inhibition of the ACC hyperactivity was sufficient to alleviate the aversive and anxiodepressive-like consequences of neuropathic pain, indicating that these consequences are underpinned by ACC hyperactivity.SIGNIFICANCE STATEMENT Chronic pain is frequently comorbid with mood disorders, such as anxiety and depression. It has been shown that it is possible to model this comorbidity in animal models by taking into consideration the time factor. In this study, we aimed at determining the dynamic of different components and consequences of chronic pain, and correlated them with electrophysiological alterations. By combining electrophysiological, optogenetic, and behavioral analyses in a mouse model of neuropathic pain, we show that the mechanical hypersensitivity, ongoing pain, anxiodepressive consequences, and their recoveries do not necessarily exhibit temporal synchrony during chronic pain processing, and that the hyperactivity of the anterior cingulate cortex is essential for driving the emotional impact of neuropathic pain.


Asunto(s)
Dolor Crónico/fisiopatología , Dolor Crónico/psicología , Giro del Cíngulo/fisiopatología , Neuralgia/fisiopatología , Neuralgia/psicología , Animales , Ansiedad/etiología , Ansiedad/fisiopatología , Depresión/etiología , Depresión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Cladistics ; 32(1): 54-81, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34732023

RESUMEN

Orthoptera have been used for decades for numerous evolutionary questions but several of its constituent groups, notably crickets, still suffer from a lack of a robust phylogenetic hypothesis. We propose the first phylogenetic hypothesis for the evolution of crickets sensu lato, based on analysis of 205 species, representing 88% of the subfamilies and 71% tribes currently listed in the database Orthoptera Species File (OSF). We reconstructed parsimony, maximum likelihood and Bayesian phylogenies using fragments of 18S, 28SA, 28SD, H3, 12S, 16S, and cytb (~3600 bp). Our results support the monophyly of the cricket clade, and its subdivision into two clades: mole crickets and ant-loving crickets on the one hand, and all the other crickets on the other (i.e. crickets sensu stricto). Crickets sensu stricto form seven monophyletic clades, which support part of the OSF families, "subfamily groups", or subfamilies: the mole crickets (OSF Gryllotalpidae), the scaly crickets (OSF Mogoplistidae), and the true crickets (OSF Gryllidae) are recovered as monophyletic. Among the 22 sampled subfamilies, only six are monophyletic: Gryllotalpinae, Trigonidiinae, Pteroplistinae, Euscyrtinae, Oecanthinae, and Phaloriinae. Most of the 37 tribes sampled are para- or polyphyletic. We propose the best-supported clades as backbones for future definitions of familial groups, validating some taxonomic hypotheses proposed in the past. These clades fit variously with the morphological characters used today to identify crickets. Our study emphasizes the utility of a classificatory system that accommodates diagnostic characters and monophyletic units of evolution. Moreover, the phylogenetic hypotheses proposed by the present study open new perspectives for further evolutionary research, especially on acoustic communication and biogeography.

3.
Eur J Neurosci ; 40(8): 3189-201, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25104469

RESUMEN

Probenecid, an agonist of transient receptor vanilloid (TRPV) type 2, was used to evaluate the effects of TRPV2 activation on excitatory and inhibitory synaptic transmission in the dorsal horn (DH) of the rat spinal cord and on nociceptive reflexes induced by thermal heat and mechanical stimuli. The effects of probenecid were compared with those of capsaicin, a TRPV1 agonist. Calcium imaging experiments on rat dorsal root ganglion (DRG) and DH cultures indicated that functional TRPV2 and TRPV1 were expressed by essentially non-overlapping subpopulations of DRG neurons, but were absent from DH neurons and DH and DRG glial cells. Pretreatment of DRG cultures with small interfering RNAs against TRPV2 suppressed the responses to probenecid. Patch-clamp recordings from spinal cord slices showed that probenecid and capsaicin increased the frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents in a subset of laminae III-V neurons. In contrast to capsaicin, probenecid failed to stimulate synaptic transmission in lamina II. Intrathecal or intraplantar injections of probenecid induced mechanical hyperalgesia/allodynia without affecting nociceptive heat responses. Capsaicin induced both mechanical hyperalgesia/allodynia and heat hyperalgesia. Activation of TRPV1 or TRPV2 in distinct sets of primary afferents increased the sEPSC frequencies in a largely common population of DH neurons in laminae III-V, and might underlie the development of mechanical hypersensitivity following probenecid or capsaicin treatment. However, only TRPV1-expressing afferents facilitated excitatory and/or inhibitory transmission in a subpopulation of lamina II neurons, and this phenomenon might be correlated with the induction of thermal heat hyperalgesia.


Asunto(s)
Neuronas/fisiología , Asta Dorsal de la Médula Espinal/fisiología , Transmisión Sináptica , Canales Catiónicos TRPV/fisiología , Vías Aferentes , Animales , Capsaicina/farmacología , Células Cultivadas , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Hiperalgesia/inducido químicamente , Masculino , Neuronas/efectos de los fármacos , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Probenecid/farmacología , Ratas , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Canales Catiónicos TRPV/agonistas
4.
PLoS One ; 19(5): e0303080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722876

RESUMEN

Cricket Frass Fertilizer (CFF) was tested for its efficiency and potential as a fertilizer on the growth of green beans (Phaseolus vulgaris L.) in central Madagascar from April 2020 to October 2020. We grew green beans experimentally for 93 days with seven different fertilizer treatments: NPK 200 kg/ha (0.47 g of N/plant), GUANOMAD (guano from bat) 300 kg/ha (0.26 g of N/ plant), CFF 100 kg/ha (0.12 g of N/plant), CFF 200 kg/ha (0.24 g of N/plant), CFF 300 kg/ha (0.38 g of N/plant), CFF 400 kg/ha (0.52 g of N/plant), and no fertilizer (0 g of N/plant). Three plant traits were measured: survival proportion, vegetative biomass, and pod biomass. The survival proportion of plants treated with the highest dose of CFF (400 kg/ha, 88.1%), NPK (79.8%), and GUANOMAD (81.2%) were similar, but plants treated with the former yielded significantly higher vegetative (35.5 g/plant) and pod biomass (11 g/plant). These results suggest that fertilizing green beans with CFF at a 400 kg/ha dose is sufficient for plant survival and growth, and improves pod production. In Madagascar where soil quality is poor, dependence on imported chemical fertilizers (NPK) and other organic fertilizer (GUANOMAD) can be reduced. Cricket Frass Fertilizer can be used as an alternative sustainable fertilizer for beans.


Asunto(s)
Fertilizantes , Phaseolus , Fertilizantes/análisis , Phaseolus/crecimiento & desarrollo , Phaseolus/efectos de los fármacos , Biomasa , Madagascar , Animales , Gryllidae/crecimiento & desarrollo
5.
PLoS One ; 19(4): e0300438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38687812

RESUMEN

Gryllus bimaculatus (Orthoptera: Gryllidae) is widely considered an excellent nutrient source for food and feed. Despite its economic importance, there is limited information on the impact of temperature on the bionomics of this cricket to guide its effective and sustainable mass production in its geographical range. The biological parameters of G. bimaculatus were investigated at eight different temperatures ranging from 20-40˚C. The Insect Life-Cycle Modelling (ILCYM) program was used to fit linear and non-linear functions to the data to describe the influence of temperature on life history parameters and its farmability under the current and projected climate for 2050. Our results revealed that G. bimaculatus was able to complete its lifecycle in the temperature range of 20°C to 37°C with a maximum finite rate of population increase (= 1.14) at 35°C. The developmental time of G. bimaculatus decreased with increasing temperature. The least developmental time and mortality were attained at 32°C. The highest wet length and mass of G. bimaculatus occurred at 32°C. The lowest temperature threshold for G. bimaculatus egg and nymph development was approximated using linear regression functions to be at 15.9°C and 16.2°C with a temperature constant of 108.7 and 555.6 degree days. The maximum fecundity (2301.98 eggs per female), net reproductive rate (988.42 daughters/ generation), and intrinsic rate of natural increase (0.134 days) were recorded at 32°C and the shortest doubling of 5.2 days was observed at 35°C. Based on our findings G. bimaculatus can be farmed in countries with temperatures ranging between 20 and 37°C around the globe. These findings will help the cricket farmers understand and project the cricket population dynamics around the world as influenced by temperature, and as such, will contribute to more efficient farming.


Asunto(s)
Gryllidae , Temperatura , Animales , Gryllidae/crecimiento & desarrollo , Gryllidae/fisiología , Femenino , Masculino , Estadios del Ciclo de Vida
6.
Neurobiol Dis ; 60: 39-50, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23978467

RESUMEN

Neuropathic pain is pain arising as a direct consequence of a lesion or disease affecting the somatosensory system. It is usually chronic and challenging to treat. Some antidepressants are first-line pharmacological treatments for neuropathic pain. The noradrenaline that is recruited by the action of the antidepressants on reuptake transporters has been proposed to act through ß2-adrenoceptors (ß2-ARs) to lead to the observed therapeutic effect. However, the complex downstream mechanism mediating this action remained to be identified. In this study, we demonstrate in a mouse model of neuropathic pain that an antidepressant's effect on neuropathic allodynia involves the peripheral nervous system and the inhibition of cytokine tumor necrosis factor α (TNFα) production. The antiallodynic action of nortriptyline is indeed lost after peripheral sympathectomy, but not after lesion of central descending noradrenergic pathways. More particularly, we report that antidepressant-recruited noradrenaline acts, within dorsal root ganglia, on ß2-ARs expressed by non-neuronal satellite cells. This stimulation of ß2-ARs decreases the neuropathy-induced production of membrane-bound TNFα, resulting in relief of neuropathic allodynia. This indirect anti-TNFα action was observed with the tricyclic antidepressant nortriptyline, the selective serotonin and noradrenaline reuptake inhibitor venlafaxine and the ß2-AR agonist terbutaline. Our data revealed an original therapeutic mechanism that may open novel research avenues for the management of painful peripheral neuropathies.


Asunto(s)
Antidepresivos Tricíclicos/farmacología , Ganglios Espinales/metabolismo , Neuralgia/tratamiento farmacológico , Receptores Adrenérgicos beta 2/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Anticuerpos Monoclonales/farmacología , Antidepresivos Tricíclicos/uso terapéutico , Etanercept , Ganglios Espinales/patología , Inmunoglobulina G/farmacología , Infliximab , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Norepinefrina/metabolismo , Nortriptilina/farmacología , Dimensión del Dolor , Receptores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Insect Sci ; 13: 157, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24785151

RESUMEN

Guadeloupe, the largest of the Leeward Islands, harbors three species of Pseudophyllinae (Orthoptera: Tettigoniidae) belonging to distinct tribes. This study examined the basic aspects of sound production and acousto-vibratory behavior of these species. As the songs of many Pseudophyllinae are complex and peak at high frequencies, they require high quality recordings. Wild specimens were therefore recorded ex situ. Collected specimens were used in structure-function experiments. Karukerana aguilari Bonfils (Pterophyllini) is a large species with a mirror in each tegmen and conspicuous folds over the mirror. It sings 4-6 syllables, each comprising 10-20 pulses, with several peaks in the frequency spectrum between 4 and 20 kHz. The song is among the loudest in Orthoptera (> 125 dB SPL in 10 cm distance). The folds are protective and have no function in song production. Both mirrors may work independently in sound radiation. Nesonotus reticulatus (Fabricius) (Cocconotini) produces verses from two syllables at irregular intervals. The song peaks around 20 kHz. While singing, the males often produce a tremulation signal with the abdomen at about 8-10 Hz. To our knowledge, it is the first record of simultaneous calling song and tremulation in Orthoptera. Other males reply to the tremulation with their own tremulation. Xerophyllopteryx fumosa (Brunner von Wattenwyl) (Pleminiini) is a large, bark-like species, producing a syllable of around 20 pulses. The syllables are produced with irregular rhythms (often two with shorter intervals). The song peaks around 2-3 kHz and 10 kHz. The hind wings are relatively thick and are held between the half opened tegmina during singing. Removal of the hind wings reduces song intensity by about 5 dB, especially of the low frequency component, suggesting that the hind wings have a role in amplifying the song.


Asunto(s)
Comunicación Animal , Ortópteros/fisiología , Alas de Animales/fisiología , Animales , Femenino , Guadalupe , Masculino , Movimiento , Espectrografía del Sonido , Especificidad de la Especie , Grabación en Cinta , Grabación de Cinta de Video
8.
Zootaxa ; 3741: 279-88, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25112989

RESUMEN

Two new Cocconitini Brunner von Wattenwyl, 1895 species belonging to Nesonotus Beier, 1960 are described from the Lesser Antilles: Nesonotus caeruloglobus Hugel, n. sp. from Dominica, and Nesonotus vulneratus Hugel, n. sp. from Martinique. The songs of both species are described and elements of biology are given. The taxonomic status of species close to Nesonotus tricornis (Thunberg, 1815) is discussed.


Asunto(s)
Ortópteros/clasificación , Animales , Dominica , Femenino , Masculino , Martinica , Ortópteros/anatomía & histología , Ortópteros/fisiología
9.
Pain ; 164(11): 2411-2424, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37578501

RESUMEN

ABSTRACT: Somatosensory information is delivered to neuronal networks of the dorsal horn (DH) of the spinal cord by the axons of primary afferent neurons that encode the intensity of peripheral sensory stimuli under the form of a code based on the frequency of action potential firing. The efficient processing of these messages within the DH involves frequency-tuned synapses, a phenomenon linked to their ability to display activity-dependent forms of short-term plasticity (STP). By affecting differently excitatory and inhibitory synaptic transmissions, these STP properties allow a powerful gain control in DH neuronal networks that may be critical for the integration of nociceptive messages before they are forwarded to the brain, where they may be ultimately interpreted as pain. Moreover, these STPs can be finely modulated by endogenous signaling molecules, such as neurosteroids, adenosine, or GABA. The STP properties of DH inhibitory synapses might also, at least in part, participate in the pain-relieving effect of nonpharmacological analgesic procedures, such as transcutaneous electrical nerve stimulation, electroacupuncture, or spinal cord stimulation. The properties of target-specific STP at inhibitory DH synapses and their possible contribution to electrical stimulation-induced reduction of hyperalgesic and allodynic states in chronic pain will be reviewed and discussed.

10.
Genome Biol ; 24(1): 261, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968726

RESUMEN

BACKGROUND: Using mouse genetic studies and systematic assessments of brain neuroanatomical phenotypes, we set out to identify which of the 30 genes causes brain defects at the autism-associated 16p11.2 locus. RESULTS: We show that multiple genes mapping to this region interact to regulate brain anatomy, with female mice exhibiting far fewer brain neuroanatomical phenotypes. In male mice, among the 13 genes associated with neuroanatomical defects (Mvp, Ppp4c, Zg16, Taok2, Slx1b, Maz, Fam57b, Bola2, Tbx6, Qprt, Spn, Hirip3, and Doc2a), Mvp is the top driver implicated in phenotypes pertaining to brain, cortex, hippocampus, ventricles, and corpus callosum sizes. The major vault protein (MVP), the main component of the vault organelle, is a conserved protein found in eukaryotic cells, yet its function is not understood. Here, we find MVP expression highly specific to the limbic system and show that Mvp regulates neuronal morphology, postnatally and specifically in males. We also recapitulate a previously reported genetic interaction and show that Mvp+/-;Mapk3+/- mice exhibit behavioral deficits, notably decreased anxiety-like traits detected in the elevated plus maze and open field paradigms. CONCLUSIONS: Our study highlights multiple gene drivers in neuroanatomical phenotypes, interacting with each other through complex relationships. It also provides the first evidence for the involvement of the major vault protein in the regulation of brain size and neuroanatomy, specifically in male mice.


Asunto(s)
Trastorno Autístico , Masculino , Animales , Ratones , Femenino , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Neuroanatomía , Encéfalo/metabolismo , Fenotipo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al Calcio/genética , Proteínas del Tejido Nervioso/metabolismo
11.
Nat Commun ; 14(1): 2198, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069164

RESUMEN

While depression and chronic pain are frequently comorbid, underlying neuronal circuits and their psychopathological relevance remain poorly defined. Here we show in mice that hyperactivity of the neuronal pathway linking the basolateral amygdala to the anterior cingulate cortex is essential for chronic pain-induced depression. Moreover, activation of this pathway in naive male mice, in the absence of on-going pain, is sufficient to trigger depressive-like behaviors, as well as transcriptomic alterations that recapitulate core molecular features of depression in the human brain. These alterations notably impact gene modules related to myelination and the oligodendrocyte lineage. Among these, we show that Sema4a, which was significantly upregulated in both male mice and humans in the context of altered mood, is necessary for the emergence of emotional dysfunction. Overall, these results place the amygdalo-cingulate pathway at the core of pain and depression comorbidity, and unravel the role of Sema4a and impaired myelination in mood control.


Asunto(s)
Complejo Nuclear Basolateral , Dolor Crónico , Semaforinas , Ratones , Masculino , Humanos , Animales , Depresión/genética , Giro del Cíngulo/metabolismo , Complejo Nuclear Basolateral/metabolismo , Comorbilidad , Semaforinas/metabolismo
12.
Front Mol Neurosci ; 15: 903087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860500

RESUMEN

The dorsal horn (DH) of the spinal cord is an important structure involved in the integration of nociceptive messages. Plastic changes in the properties of neuronal networks in the DH underlie the development of analgesia as well as of hyperalgesia and allodynia in acute and chronic pain states. Two key mechanisms are involved in these chronic pain states: increased electrical activities and glutamate release leading to the recruitment of NMDAr and plastic changes in the synaptic inhibition. Although: (1) the balance between excitation and inhibition is known to play a critical role in the spinal network; and (2) plastic changes in spinal excitation and inhibition have been studied separately, the relationship between these two mechanisms has not been investigated in detail. In the present work, we addressed the role of NMDA receptors in the modulation of GABAergic synaptic transmission in the DH network. Using tight-seal whole-cell recordings on adult mice DH neurons, we characterized the effect of NMDAr activation on inhibitory synaptic transmission and more especially on the GABAergic one. Our results show that, in a subset of neurons recorded in lamina II, NMDAr activation facilitates spontaneous and miniature GABAergic synaptic transmission with a target specificity on GABAergic interneurons. In contrast, NMDA reduced the mean amplitude of evoked GABAergic IPSCs. These results show that NMDAr modulate GABAergic transmission by a presynaptic mechanism of action. Using a pharmacological approach, we investigated the composition of NMDAr involved in this modulation of GABAergic synaptic transmission. We found that the NMDA-induced facilitation was mediated by the activation of NMDAr containing GluN2C/D subunits. Altogether, our results bring new insights on nociceptive information processing in the spinal cord network and plastic changes in synaptic inhibition that could underlie the development and maintenance of chronic pain.

13.
Pain ; 163(5): e675-e688, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34490851

RESUMEN

ABSTRACT: Networks of the dorsal horn of the spinal cord process nociceptive information from the periphery. In these networks, the excitation-inhibition balance is critical to shape this nociceptive information and to gate it to the brain where it is interpreted as pain. Our aim was to define whether short-term plasticity of inhibitory connections could tune this inhibition-excitation balance by differentially controlling excitatory and inhibitory microcircuits. To this end, we used spinal cord slices from adult mice expressing enhanced green fluorescent protein (eGFP) under the GAD65 promoter and recorded from both eGFP+ (putative inhibitory) and eGFP- (putative excitatory) neurons of lamina II while stimulating single presynaptic GABAergic interneurons at various frequencies. Our results indicate that GABAergic neurons of lamina II simultaneously contact eGFP- and eGFP+ neurons, but these connections display very different frequency-dependent short-term plasticities. Connections onto eGFP- interneurons displayed limited frequency-dependent changes and strong time-dependent summation of inhibitory synaptic currents that was however subjected to a tonic activity-dependent inhibition involving A1 adenosine receptors. By contrast, GABAergic connections onto eGFP+ interneurons expressed pronounced frequency-dependent depression, thus favoring disinhibition at these synapses by a mechanism involving the activation of GABAB autoreceptors at low frequency. Interestingly, the balance favors inhibition at frequencies associated with intense pain, whereas it favors excitation at frequencies associated with low pain. Therefore, these target-specific and frequency-specific plasticities allow to tune the balance between inhibition and disinhibition while processing frequency-coded information from primary afferents. These short-term plasticities and their modulation by A1 and GABAB receptors might represent an interesting target in pain-alleviating strategies.


Asunto(s)
Nocicepción , Células del Asta Posterior , Animales , Neuronas GABAérgicas , Interneuronas/fisiología , Ratones , Inhibición Neural/fisiología , Dolor/metabolismo , Células del Asta Posterior/metabolismo , Asta Dorsal de la Médula Espinal
14.
Neuropharmacology ; 205: 108909, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34875284

RESUMEN

Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory nervous system. It is accompanied by neuronal and non-neuronal alterations, including alterations in intracellular second messenger pathways. Cellular levels of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) are regulated by phosphodiesterase (PDE) enzymes. Here, we studied the impact of PDE inhibitors (PDEi) in a mouse model of peripheral nerve injury induced by placing a cuff around the main branch of the sciatic nerve. Mechanical hypersensitivity, evaluated using von Frey filaments, was relieved by sustained treatment with the non-selective PDEi theophylline and ibudilast (AV-411), with PDE4i rolipram, etazolate and YM-976, and with PDE5i sildenafil, zaprinast and MY-5445, but not by treatments with PDE1i vinpocetine, PDE2i EHNA or PDE3i milrinone. Using pharmacological and knock-out approaches, we show a preferential implication of delta opioid receptors in the action of the PDE4i rolipram and of both mu and delta opioid receptors in the action of the PDE5i sildenafil. Calcium imaging highlighted a preferential action of rolipram on dorsal root ganglia non-neuronal cells, through PDE4B and PDE4D inhibition. Rolipram had anti-neuroimmune action, as shown by its impact on levels of the pro-inflammatory cytokine tumor necrosis factor-α (TNFα) in the dorsal root ganglia of mice with peripheral nerve injury, as well as in human peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharides. This study suggests that PDEs, especially PDE4 and 5, may be targets of interest in the treatment of neuropathic pain.


Asunto(s)
Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/complicaciones , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Hiperalgesia/etiología , Ratones , Neuralgia/etiología , Rolipram/farmacología
15.
Cancer Lett ; 524: 232-244, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637845

RESUMEN

Increasingly common, neuroendocrine tumors (NETs) are regarded nowadays as neoplasms potentially causing debilitating symptoms and life-threatening medical conditions. Pheochromocytoma is a NET that develops from chromaffin cells of the adrenal medulla, and is responsible for an excessive secretion of catecholamines. Consequently, patients have an increased risk for clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Somatostatin analogues are among the main anti-secretory medical drugs used in current clinical practice in patients with NETs. However, their impact on pheochromocytoma-associated catecholamine hypersecretion remains incompletely explored. This study investigated the potential efficacy of octreotide and pasireotide (SOM230) on human tumor cells directly cultured from freshly resected pheochromocytomas using an implemented catecholamine secretion measurement by carbon fiber amperometry. SOM230 treatment efficiently inhibited nicotine-induced catecholamine secretion both in bovine chromaffin cells and in human tumor cells whereas octreotide had no effect. Moreover, SOM230 specifically decreased the number of exocytic events by impairing the stimulation-evoked calcium influx as well as the nicotinic receptor-activated inward current in human pheochromocytoma cells. Altogether, our findings indicate that SOM230 acts as an inhibitor of catecholamine secretion through a mechanism involving the nicotinic receptor and might be considered as a potential anti-secretory treatment for patients with pheochromocytoma.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/tratamiento farmacológico , Tumores Neuroendocrinos/tratamiento farmacológico , Feocromocitoma/tratamiento farmacológico , Somatostatina/análogos & derivados , Neoplasias de las Glándulas Suprarrenales/metabolismo , Neoplasias de las Glándulas Suprarrenales/patología , Catecolaminas/biosíntesis , Catecolaminas/metabolismo , Línea Celular Tumoral , Humanos , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Octreótido/farmacología , Feocromocitoma/metabolismo , Feocromocitoma/patología , Somatostatina/farmacología
16.
Eur J Neurosci ; 34(8): 1230-40, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21936876

RESUMEN

Neurotensin (NT) is a neuropeptide involved in the modulation of nociception. We have investigated the actions of NT on cultured postnatal rat spinal cord dorsal horn (DH) neurons. NT induced an inward current associated with a decrease in membrane conductance in 46% of the neurons and increased the frequency of glutamatergic miniature excitatory synaptic currents in 37% of the neurons. Similar effects were observed in acute slices. Both effects of NT were reproduced by the selective NTS1 agonist JMV449 and blocked by the NTS1 antagonist SR48692 and the NTS1/NTS2 antagonist SR142948A. The NTS2 agonist levocabastine had no effect. The actions of NT persisted after inactivation of G(i/o) proteins by pertussis toxin but were absent after inactivation of protein kinase C (PKC) by chelerythrine or inhibition of the MAPK (ERK1/2) pathway by PD98059. Pre- and postsynaptic effects of NT were insensitive to classical voltage- and Ca(2+) -dependent K(+) channel blockers. The K(+) conductance inhibited by NT was blocked by Ba(2+) and displayed no or little inward rectification, despite the presence of strongly rectifying Ba(2+) -sensitive K(+) conductance in these neurons. This suggested that NT blocked two-pore domain (K2P) background K(+) -channels rather than inwardly rectifying K(+) channels. Zn(2+) ions, which inhibit TRESK and TASK-3 K2P channels, decreased NT-induced current. Our results indicate that in DH neurons NT activates NTS1 receptors which, via the PKC-dependent activation of the MAPK (ERK1/2) pathway, depolarize the postsynaptic neuron and increase the synaptic release of glutamate. These actions of NT might modulate the transfer and the integration of somatosensory information in the DH.


Asunto(s)
Ácido Glutámico/metabolismo , Neurotensina/farmacología , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Canales de Potasio/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Benzofenantridinas/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Neurotensina/análogos & derivados , Oligopéptidos/farmacología , Técnicas de Placa-Clamp , Toxina del Pertussis/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Neurotensina/agonistas , Receptores de Neurotensina/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
17.
Zootaxa ; 4995(1): 1-26, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34186819

RESUMEN

Nemobiinae crickets of the tribe Burcini Gorochov, 1986 are described for the first time from the shores of South Western Indian Ocean islands. The new genus Makalapobius n. gen. is proposed to include M. aigrettensis n. gen. n. sp. from Mauritius and M. masihu n. gen. n. sp. from Grande Comore, and the new genus Gabusibius n. gen. to include G. ndzilu n. gen. n. sp. from Anjouan, G. mosi n. gen. n. sp., from Mohéli, and G. dzindzanu n. gen. n. sp. from Mayotte. The species Speonemobius littoreus Vannini Chelazzi, 1978 from Somalia coast is tentatively placed in the genus Gabusibius n. gen. as G. ? litoreus (Vannini Chelazzi, 1978) n. gen. n. comb. The songs of G. mosi n. gen. n. sp. and M. aigrettensis n. gen. n. sp. are described. The threats to SWIO Burcini and endemism of Orthoptera from SWIO coastal areas are discussed.


Asunto(s)
Gryllidae/clasificación , Distribución Animal , Animales , Comoras , Islas
18.
Zootaxa ; 5047(3): 201-246, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810848

RESUMEN

The Phalangopsidae crickets (Grylloidea) of the Seychelles are examined following extensive field sampling on several main islands of the archipelago (Mah, Silhouette, Praslin, La Digue). Despite the small area of these islands, six genera (12 species) are documented, including one new genus and five new species. The type species of the genus Seychellesia Bolivar, 1912 is transferred to the genus Paragryllodes Karny, 1909 as Paragryllodes nitidula (Bolivar, 1912) n. comb. The other species described in Seychellesia are transferred to the genus Seselia Hugel Desutter-Grandcolas, n. gen., as Seselia longicercata (Bolivar, 1912) n. comb. and Seselia patellifera (Bolivar, 1912) n. comb. Two new species are also described in the genus Seselia Hugel Desutter-Grandcolas, n. gen., Seselia coccofessei Hugel Desutter-Grandcolas, n. gen., n. sp. (type species of the genus) and Seselia matyoti Hugel Desutter-Grandcolas, n. gen., n. sp. The genera Phaeogryllus Bolivar, 1912 and Phalangacris Bolivar, 1895 are redescribed, including Phalangacris ferlegro Hugel Desutter-Grandcolas, n. sp. and Phalangacris sotsote Hugel Desutter-Grandcolas, n. sp. that are new to science. The genus Gryllapterus Bolivar, 1912 is redescribed and transferred from the Landrevinae (Gryllidae) to the Cachoplistinae (Phalangopsidae). New tribes are defined for the genus Paragryllodes (Paragryllodini Hugel Desutter-Grandcolas, n. tribe) on the one hand, and for Seselia Hugel Desutter-Grandcolas, n. gen., Phalangacris, Phaeogryllus and Gryllapterus (Seselini Hugel Desutter-Grandcolas, n. tribe) on the other, using morphological characters and the results of molecular phylogenetic studies (Warren et al. 2019). Phaloria (Papuloria) insularis (Bolivar, 1912) (Phaloriinae) is redescribed and restricted to Mah, and its calling song is documented for the first time, while Phaloria (Papuloria) bolivari Hugel Desutter-Grandcolas, n. sp. is newly described from Silhouette. Identification keys are proposed for the genera of Seselini Hugel Desutter-Grandcolas, n. tribe, and for the species of Seselia Hugel Desutter-Grandcolas, n. gen. and Phalangacris. The confusion between the Mogoplistidae Ornebius succineus Bolivar, 1912 and the Phalangopsidae Heterotrypus succineus Bolivar, 1910 is discussed, and the name Subtiloria succineus (Bolivar, 1912) considered a nomen nudum.


Asunto(s)
Escarabajos , Gryllidae , Ortópteros , Distribución Animal , Estructuras Animales , Animales , Filogenia , Seychelles
19.
Med Sci (Paris) ; 37(2): 141-151, 2021 Feb.
Artículo en Francés | MEDLINE | ID: mdl-33591257

RESUMEN

Autistic subjects frequently display sensory anomalies. Those regarding nociception and its potential outcome, pain, are of crucial interest. Indeed, because of numerous comorbidities, autistic subjects are more often exposed to painful situation. Despite being often considered as less sensitive, experimental studies evaluating this point are failing to reach consensus. Using animal model can help reduce variability and bring, regarding autism, an overview of potential alterations of the nociceptive system at the cellular and molecular level.


TITLE: Nociception, douleur et autisme. ABSTRACT: Les sujets autistes présentent fréquemment des anomalies sensorielles. Celles concernant la nociception ainsi que sa potentielle résultante, la douleur, sont d'un intérêt capital. En effet, du fait de nombreuses comorbidités, les sujets autistes sont plus souvent exposés à des situations douloureuses que la population générale. Alors qu'ils sont souvent considérés comme moins sensibles, les études expérimentales sur ce point sont loin de faire consensus. Utiliser des modèles animaux pourrait permettre de s'affranchir de certaines sources de variabilité et d'apporter, dans le cadre de l'autisme, une vue d'ensemble des altérations potentielles du système nociceptif aux niveaux cellulaire et moléculaire.


Asunto(s)
Trastorno Autístico , Nocicepción/fisiología , Dolor/etiología , Animales , Trastorno Autístico/complicaciones , Trastorno Autístico/epidemiología , Trastorno Autístico/patología , Trastorno Autístico/fisiopatología , Modelos Animales de Enfermedad , Humanos , Dolor/epidemiología , Dimensión del Dolor , Umbral del Dolor/psicología
20.
Ann Bot ; 105(3): 355-64, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20067913

RESUMEN

BACKGROUND AND AIMS: Pollinator-mediated selection and evolution of floral traits have long fascinated evolutionary ecologists. No other plant family shows as wide a range of pollinator-linked floral forms as Orchidaceae. In spite of the large size of this model family and a long history of orchid pollination biology, the identity and specificity of most orchid pollinators remains inadequately studied, especially in the tropics where the family has undergone extensive diversification. Angraecum (Vandeae, Epidendroideae), a large genus of tropical Old World orchids renowned for their floral morphology specialized for hawkmoth pollination, has been a model system since the time of Darwin. METHODS: The pollination biology of A. cadetii, an endemic species of the islands of Mauritius and Reunion (Mascarene Islands, Indian Ocean) displaying atypical flowers for the genus (white and medium-size, but short-spurred) was investigated. Natural pollinators were observed by means of hard-disk camcorders. Pollinator-linked floral traits, namely spur length, nectar volume and concentration and scent production were also investigated. Pollinator efficiency (pollen removal and deposition) and reproductive success (fruit set) were quantified in natural field conditions weekly during the 2003, 2004 and 2005 flowering seasons (January to March). KEY RESULTS: Angraecum cadetii is self-compatible but requires a pollinator to achieve fruit set. Only one pollinator species was observed, an undescribed species of raspy cricket (Gryllacrididae, Orthoptera). These crickets, which are nocturnal foragers, reached flowers by climbing up leaves of the orchid or jumping across from neighbouring plants and probed the most 'fresh-looking' flowers on each plant. Visits to flowers were relatively long (if compared with the behaviour of birds or hawkmoths), averaging 16.5 s with a maximum of 41.0 s. At the study site of La Plaine des Palmistes (Pandanus forest), 46.5 % of flowers had pollen removed and 27.5 % had pollinia deposited on stigmas. The proportion of flowers that set fruit ranged from 11.9 % to 43.4 %, depending of the sites sampled across the island. CONCLUSIONS: Although orthopterans are well known for herbivory, this represents the first clearly supported case of orthopteran-mediated pollination in flowering plants.


Asunto(s)
Gryllidae/fisiología , Magnoliopsida/fisiología , Polen , Animales , Gryllidae/clasificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda