Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemphyschem ; 25(17): e202400471, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38797713

RESUMEN

Light-induced excited spin-state trapping reactions in iron pyridinic complexes allow the iron's low-to-high spin transition in a sub-picosecond timescale. Employing a recently developed model for [Fe(2,2'-bipyridine)3]2+ photochemical spin-crossover reaction in conjunction with quantum wavepacket dynamics, we explore the possibility of controlling the reaction through external electromagnetic fields, aiming at stabilizing the initial metal-to-ligand charge transfer states. We show that simple Gaussian-shaped electromagnetic fields have a minor effect on the population kinetics. However, introducing vibrationally excited initial wavepacket representations allows for maintaining the population trapped in the metal-to-ligand charge transfer states. Using optimal control theory, we propose an electromagnetic field shape that increases the lifetime of metal-to-ligand charge transfer states. These results open the route for controlling the iron photochemistry through the action of external electric fields.

2.
Annu Rev Phys Chem ; 63: 287-323, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22242728

RESUMEN

The classic density-functional theory (DFT) formalism introduced by Hohenberg, Kohn, and Sham in the mid-1960s is based on the idea that the complicated N-electron wave function can be replaced with the mathematically simpler 1-electron charge density in electronic structure calculations of the ground stationary state. As such, ordinary DFT cannot treat time-dependent (TD) problems nor describe excited electronic states. In 1984, Runge and Gross proved a theorem making TD-DFT formally exact. Information about electronic excited states may be obtained from this theory through the linear response (LR) theory formalism. Beginning in the mid-1990s, LR-TD-DFT became increasingly popular for calculating absorption and other spectra of medium- and large-sized molecules. Its ease of use and relatively good accuracy has now brought LR-TD-DFT to the forefront for this type of application. As the number and the diversity of applications of TD-DFT have grown, so too has our understanding of the strengths and weaknesses of the approximate functionals commonly used for TD-DFT. The objective of this article is to continue where a previous review of TD-DFT in Volume 55 of the Annual Review of Physical Chemistry left off and highlight some of the problems and solutions from the point of view of applied physical chemistry. Because doubly-excited states have a particularly important role to play in bond dissociation and formation in both thermal and photochemistry, particular emphasis is placed on the problem of going beyond or around the TD-DFT adiabatic approximation, which limits TD-DFT calculations to nominally singly-excited states.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda