Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nutr Metab (Lond) ; 21(1): 20, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594756

RESUMEN

BACKGROUND: Body composition and body fat distribution are important predictors of cardiometabolic diseases. The etiology of cardiometabolic diseases is heterogenous, and partly driven by inter-individual differences in tissue-specific insulin sensitivity. OBJECTIVES: To investigate (1) the associations between body composition and whole-body, liver and muscle insulin sensitivity, and (2) changes in body composition and insulin sensitivity and their relationship after a 12-week isocaloric diet high in mono-unsaturated fatty acids (HMUFA) or a low-fat, high-protein, high-fiber (LFHP) diet. METHODS: This subcohort analysis of the PERSON study includes 93 individuals (53% women, BMI 25-40 kg/m2, 40-75 years) who participated in this randomized intervention study. At baseline and after 12 weeks of following the LFHP, or HMUFA diet, we performed a 7-point oral glucose tolerance test to assess whole-body, liver, and muscle insulin sensitivity, and whole-body magnetic resonance imaging to determine body composition and body fat distribution. Both diets are within the guidelines of healthy nutrition. RESULTS: At baseline, liver fat content was associated with worse liver insulin sensitivity (ß [95%CI]; 0.12 [0.01; 0.22]). Only in women, thigh muscle fat content was inversely related to muscle insulin sensitivity (-0.27 [-0.48; -0.05]). Visceral adipose tissue (VAT) was inversely associated with whole-body, liver, and muscle insulin sensitivity. Both diets decreased VAT, abdominal subcutaneous adipose tissue (aSAT), and liver fat, but not whole-body and tissue-specific insulin sensitivity with no differences between diets. Waist circumference, however, decreased more following the LFHP diet as compared to the HMUFA diet (-3.0 vs. -0.5 cm, respectively). After the LFHP but not HMUFA diet, improvements in body composition were positively associated with improvements in whole-body and liver insulin sensitivity. CONCLUSIONS: Liver and muscle insulin sensitivity are distinctly associated with liver and muscle fat accumulation. Although both LFHP and HMUFA diets improved in body fat, VAT, aSAT, and liver fat, only LFHP-induced improvements in body composition are associated with improved insulin sensitivity. TRIAL REGISTRATION: NCT03708419 (clinicaltrials.gov).

2.
Diabetes ; 73(7): 1112-1121, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656918

RESUMEN

Obesity is associated with chronic inflammation and metabolic complications, including insulin resistance (IR). Immune cells drive inflammation through the rewiring of intracellular metabolism. However, the impact of obesity-related IR on the metabolism and functionality of circulating immune cells, like monocytes, remains poorly understood. To increase insight into the interindividual variation of immunometabolic signatures among individuals and their role in the development of IR, we assessed systemic and tissue-specific IR and circulating immune markers, and we characterized metabolic signatures and cytokine secretion of circulating monocytes from 194 individuals with a BMI ≥25 kg/m2. Monocyte metabolic signatures were defined using extracellular acidification rates (ECARs) to estimate glycolysis and oxygen consumption rates (OCRs) for oxidative metabolism. Although monocyte metabolic signatures and function based on cytokine secretion varied greatly among study participants, they were strongly associated with each other. The ECAR-to-OCR ratio, representing the balance between glycolysis and oxidative metabolism, was negatively associated with fasting insulin levels, systemic IR, and liver-specific IR. These results indicate that monocytes from individuals with IR were relatively more dependent on oxidative metabolism, whereas monocytes from more insulin-sensitive individuals were more dependent on glycolysis. Additionally, circulating CXCL11 was negatively associated with the degree of systemic IR and positively with the ECAR-to-OCR ratio in monocytes, suggesting that individuals with high IR and a monocyte metabolic dependence on oxidative metabolism also have lower levels of circulating CXCL11. Our findings suggest that monocyte metabolism is related to obesity-associated IR progression and deepen insights into the interplay between innate immune cell metabolism and IR development in humans.


Asunto(s)
Resistencia a la Insulina , Monocitos , Obesidad , Humanos , Resistencia a la Insulina/fisiología , Resistencia a la Insulina/inmunología , Obesidad/metabolismo , Obesidad/inmunología , Monocitos/metabolismo , Monocitos/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Glucólisis , Quimiocina CXCL11/metabolismo , Quimiocina CXCL11/sangre , Citocinas/metabolismo , Citocinas/sangre , Consumo de Oxígeno
3.
Acta Physiol (Oxf) ; 237(4): e13945, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36745002

RESUMEN

AIM: The aim of this study is to investigate associations between the physical activity (PA) spectrum (sedentary behavior to exercise) and tissue-specific insulin resistance (IR). METHODS: We included 219 participants for analysis (median [IQR]: 61 [55; 67] years, BMI 29.6 [26.9; 32.0] kg/m2 ; 60% female) with predominant muscle or liver IR, as determined using a 7-point oral glucose tolerance test (OGTT). PA and sedentary behavior were measured objectively (ActivPAL) across 7 days. Context-specific PA was assessed with the Baecke questionnaire. Multiple linear regression models (adjustments include age, sex, BMI, site, season, retirement, and dietary intake) were used to determine associations between the PA spectrum and hepatic insulin resistance index (HIRI), muscle insulin sensitivity index (MISI) and whole-body IR (HOMA-IR, Matsuda index). RESULTS: In fully adjusted models, objectively measured total PA (standardized regression coefficient ß = 0.17, p = 0.020), light-intensity PA (ß = 0.15, p = 0.045) and moderate-to-vigorous intensity PA (ß = 0.13, p = 0.048) were independently associated with Matsuda index, but not HOMA-IR (p > 0.05). A higher questionnaire-derived sport index and leisure index were associated with significantly lower whole-body IR (Matsuda, HOMA-IR) in men but not in women. Results varied across tissues: more time spent sedentary (ß = -0.24, p = 0.045) and a higher leisure index (ß = 0.14, p = 0.034) were respectively negatively and positively associated with MISI, but not HIRI. A higher sport index was associated with lower HIRI (ß = -0.30, p = 0.007, in men only). CONCLUSION: While we confirm a beneficial association between PA and whole-body IR, our findings indicate that associations between the PA spectrum and IR seem distinct depending on the primary site of insulin resistance (muscle or liver).


Asunto(s)
Ejercicio Físico , Resistencia a la Insulina , Conducta Sedentaria , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Prueba de Tolerancia a la Glucosa , Músculos , Hígado
4.
Cell Metab ; 35(1): 71-83.e5, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599304

RESUMEN

Precision nutrition based on metabolic phenotype may increase the effectiveness of interventions. In this proof-of-concept study, we investigated the effect of modulating dietary macronutrient composition according to muscle insulin-resistant (MIR) or liver insulin-resistant (LIR) phenotypes on cardiometabolic health. Women and men with MIR or LIR (n = 242, body mass index [BMI] 25-40 kg/m2, 40-75 years) were randomized to phenotype diet (PhenoDiet) group A or B and followed a 12-week high-monounsaturated fatty acid (HMUFA) diet or low-fat, high-protein, and high-fiber diet (LFHP) (PhenoDiet group A, MIR/HMUFA and LIR/LFHP; PhenoDiet group B, MIR/LFHP and LIR/HMUFA). PhenoDiet group B showed no significant improvements in the primary outcome disposition index, but greater improvements in insulin sensitivity, glucose homeostasis, serum triacylglycerol, and C-reactive protein compared with PhenoDiet group A were observed. We demonstrate that modulating macronutrient composition within the dietary guidelines based on tissue-specific insulin resistance (IR) phenotype enhances cardiometabolic health improvements. Clinicaltrials.gov registration: NCT03708419, CCMO registration NL63768.068.17.


Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Femenino , Humanos , Enfermedades Cardiovasculares/prevención & control , Dieta con Restricción de Grasas , Insulina , Resistencia a la Insulina/fisiología , Fenotipo , Adulto , Persona de Mediana Edad , Anciano
5.
Physiol Genomics ; 44(2): 141-51, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22108209

RESUMEN

Glucocorticoids are frequently prescribed drugs with important side-effects such as glucose intolerance and tissue remodeling. The goal was to explore the molecular basis of the response of skeletal muscle and adipose tissue during a short-term dexamethasone treatment to better understand the induction of side-effects of glucocorticoids on these metabolic tissues. Fifteen healthy male subjects were assigned to a 4-day treatment with dexamethasone at 4 mg/day. The primary outcome measures were changes in gene expression profiling of subcutaneous skeletal muscle and adipose tissue. Urinary cortisol, plasma, and metabolic biochemistry were also assessed. In both tissues the prominent observation was a response to stress and increased inflammatory responses. An upregulation of the serum amyloid A was detected in skeletal muscle, adipose tissue, and plasma, whereas circulating levels of C reactive protein, another acute phase protein, decreased along with a worsened insulin sensitivity index. As tissue-specific features, tissue remodeling was shown in skeletal muscle while the adipose tissue exhibited a decreased energy metabolism. Several limitations might be raised due to the small number of subjects investigated: a possible cross talk with the mineralocorticoid receptor, and a single time point may not identify regulations occurring during longitudinal treatment. In line with the known physiological effect of glucocorticoids the early modulation of stress response genes was observed. An unexpected feature was the upregulation of the inflammatory and immune pathways. The identification of novel impact on two glucocorticoid target tissues provides a molecular basis for the design of more specific glucocorticoids devoid of adverse effects.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Dexametasona/farmacología , Glucocorticoides/farmacología , Músculo Esquelético/efectos de los fármacos , Adulto , Proteína C-Reactiva/metabolismo , Dexametasona/administración & dosificación , Dexametasona/metabolismo , Glucocorticoides/administración & dosificación , Glucocorticoides/metabolismo , Humanos , Estudios Longitudinales , Masculino , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
7.
Front Nutr ; 8: 683369, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277683

RESUMEN

In this secondary analysis of the DiOGenes study, we investigated whether physical activity (PA) contributes to diet-induced weight loss and helps to reduce subsequent regain. We also studied the associations of PA with changes in cardiometabolic variables. Adults with overweight were included and followed an 8-week low-calorie diet (LCD). When successful (>8% weight loss), participants were randomized to different ad libitum diet groups and were advised to maintain their weight loss over the 6-month intervention period. Body weight (BW), body composition, cardiometabolic variables and subjectively-assessed PA were measured at baseline, at the end of weight loss and at the end of the intervention. BW was reduced by the LCD (from 99.8 ± 16.7 to 88.4 ± 14.9 kg; P < 0.001). This reduction was maintained during the weight maintenance period (89.2 ± 16.0 kg). Total PA (sum score of the three subscales of the Baecke questionnaire) increased during the weight loss period (from 8.16 ± 0.83 to 8.39 ± 0.78; P < 0.001) and this increase was subsequently maintained (8.42 ± 0.90). We found no evidence that baseline PA predicted weight loss. However, a higher level of baseline PA predicted a larger weight-loss-induced improvement in total cholesterol, triglycerides, glucose and CRP, and in post-prandial insulin sensitivity (Matsuda index). Subsequent weight and fat mass maintenance were predicted by the post-weight loss level of PA and associated with changes in PA during the weight maintenance phase. In conclusion, despite the fact that higher baseline levels of PA did not predict more weight loss during the LCD, nor that an increase in PA during the LCD was associated with more weight loss, higher PA levels were associated with more improvements in several cardiometabolic variables. The positive effect of higher PA on weight loss maintenance seems in contrast to randomized controlled trials that have not been able to confirm a positive effect of exercise training programmes on weight loss maintenance. This analysis supports the notion that higher self-imposed levels of PA may improve the cardiometabolic risk profile during weight loss and help to maintain weight loss afterwards.

8.
Front Nutr ; 8: 694568, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277687

RESUMEN

Background: It is well-established that the etiology of type 2 diabetes differs between individuals. Insulin resistance (IR) may develop in different tissues, but the severity of IR may differ in key metabolic organs such as the liver and skeletal muscle. Recent evidence suggests that these distinct tissue-specific IR phenotypes may also respond differentially to dietary macronutrient composition with respect to improvements in glucose metabolism. Objective: The main objective of the PERSON study is to investigate the effects of an optimal vs. suboptimal dietary macronutrient intervention according to tissue-specific IR phenotype on glucose metabolism and other health outcomes. Methods: In total, 240 overweight/obese (BMI 25 - 40 kg/m2) men and women (age 40 - 75 years) with either skeletal muscle insulin resistance (MIR) or liver insulin resistance (LIR) will participate in a two-center, randomized, double-blind, parallel, 12-week dietary intervention study. At screening, participants undergo a 7-point oral glucose tolerance test (OGTT) to determine the hepatic insulin resistance index (HIRI) and muscle insulin sensitivity index (MISI), classifying each participant as either "No MIR/LIR," "MIR," "LIR," or "combined MIR/LIR." Individuals with MIR or LIR are randomized to follow one of two isocaloric diets varying in macronutrient content and quality, that is hypothesized to be either an optimal or suboptimal diet, depending on their tissue-specific IR phenotype (MIR/LIR). Extensive measurements in a controlled laboratory setting as well as phenotyping in daily life are performed before and after the intervention. The primary study outcome is the difference in change in disposition index, which is the product of insulin sensitivity and first-phase insulin secretion, between participants who received their hypothesized optimal or suboptimal diet. Discussion: The PERSON study is one of the first randomized clinical trials in the field of precision nutrition to test effects of a more personalized dietary intervention based on IR phenotype. The results of the PERSON study will contribute knowledge on the effectiveness of targeted nutritional strategies to the emerging field of precision nutrition, and improve our understanding of the complex pathophysiology of whole body and tissue-specific IR. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT03708419, clinicaltrials.gov as NCT03708419.

9.
Health Data Sci ; 2021: 9897048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38487510

RESUMEN

Objective. The strongest locus which associated with type 2 diabetes (T2D) by the common variant rs7903146 is the transcription factor 7-like 2 gene (TCF7L2). We aimed to quantify the interaction of diet/lifestyle interventions and the genetic effect of TCF7L2 rs7903146 on glycemic traits, body weight, or waist circumference in overweight or obese adults in several randomized controlled trials (RCTs).Methods. From October 2016 to May 2018, a large collaborative analysis was performed by pooling individual-participant data from 7 RCTs. These RCTs reported changes in glycemic control and adiposity of the variant rs7903146 after dietary/lifestyle-related interventions in overweight or obese adults. Gene treatment interaction models which used the genetic effect encoded by the allele dose and common covariates were applicable to individual participant data in all studies.Results. In the joint analysis, a total of 7 eligible RCTs were included (n=4,114). Importantly, we observed a significant effect modification of diet/lifestyle-related interventions on the TCF7L2 variant rs7903146 and changes in fasting glucose. Compared with the control group, diet/lifestyle interventions were related to lower fasting glucose by -3.06 (95% CI, -5.77 to -0.36) mg/dL (test for heterogeneity and overall effect: I2=45.1%, p<0.05; z=2.20, p=0.028) per one copy of the TCF7L2 T risk allele. Furthermore, regardless of genetic risk, diet/lifestyle interventions were associated with lower waist circumference. However, there was no significant change for diet/lifestyle interventions in other glycemic control and adiposity traits per one copy of TCF7L2 risk allele.Conclusions. Our findings suggest that carrying the TCF7L2 T risk allele may have a modestly greater benefit for specific diet/lifestyle interventions to improve the control of fasting glucose in overweight or obese adults.

10.
J Nutr ; 138(12): 2399-405, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19022964

RESUMEN

Elevated plasma concentrations of remnant-like particle cholesterol (RLP-C) are atherogenic. However, factors that determine RLP-C are not fully understood. This study evaluates which factors affect RLP-C in the fasting and postprandial state, using multiple regression analyses in a large cohort of lean and obese participants. All participants (n = 740) underwent a test meal challenge containing 95 energy % (en%) fat (energy content 50% of predicted daily resting metabolic rate). Fasting and postprandial concentrations of circulating metabolites were measured over a 3-h period. Obese participants (n = 613) also participated in a 10-wk weight loss program (-2510 kJ/d), being randomized to either a low-fat or a high-fat diet (20-25 vs. 40-45en% fat). Postprandial RLP-C was associated with fasting RLP-C, waist:hip ratio (WHR), HOMA(IR) (homeostasis model assessment index for insulin resistance) (P < 0.001), and age, independently of BMI and gender [adjusted R(2) (adj. R(2)) = 0.70). These factors were also related to fasting RLP-C (P < 0.010), along with gender and physical activity (adj. R(2) = 0.23). The dietary intervention resulted in significantly lower fasting RLP-C concentrations, independently mediated by weight loss, improvements in HOMA(IR), and the fat content of the prescribed diet. However, after inclusion of plasma triglyceride (TG), HDL-cholesterol, and FFA concentrations in the models, HOMA(IR) and WHR no longer significantly predicted fasting RLP-C, although WHR remained a predictor of postprandial RLP-C (P = 0.002). Plasma TG was strongly associated with both fasting and postprandial RLP-C (P < 0.001). In conclusion, plasma RLP-C concentrations are mainly associated with plasma TG concentrations. Interestingly, the high-fat diet was more effective at decreasing fasting RLP-C concentrations in obese participants than the low-fat diet.


Asunto(s)
Colesterol/sangre , Lipoproteínas/sangre , Obesidad/sangre , Triglicéridos/sangre , Adulto , Distribución de la Grasa Corporal , Estudios de Cohortes , Grasas de la Dieta/administración & dosificación , Ayuno/sangre , Femenino , Humanos , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana Edad , Obesidad/dietoterapia , Obesidad/patología , Periodo Posprandial/fisiología
11.
J Clin Endocrinol Metab ; 92(6): 2292-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17356053

RESUMEN

AIM/HYPOTHESIS: Obesity is associated with increased triacylglycerol (TAG) storage in adipose tissue and insulin resistance. The mobilization of stored TAG is mediated by hormone-sensitive lipase (HSL) and the recently discovered adipose triglyceride lipase (ATGL). The aim of the present study was to examine whether ATGL and HSL mRNA and protein expression are altered in insulin-resistant conditions. In addition, we investigated whether a possible impaired expression could be reversed by a period of weight reduction. METHODS: Adipose tissue biopsies were taken from obese subjects (n = 44) with a wide range of insulin resistance, before and just after a 10-wk hypocaloric diet. ATGL and HSL protein and mRNA expression was determined by Western blot and quantitative RT-PCR, respectively. RESULTS: Fasting insulin levels and the degree of insulin resistance (using the homeostasis model assessment index for insulin resistance) were negatively correlated with ATGL and HSL protein expression, independent of age, gender, fat cell size, and body composition. Both mRNA and protein levels of ATGL and HSL were reduced in insulin-resistant compared with insulin-sensitive subjects (P < 0.05). Weight reduction significantly decreased ATGL and HSL mRNA and protein expression. A positive correlation between the decrease in leptin and the decrease in ATGL protein level after weight reduction was observed. Finally, ATGL and HSL mRNA and protein levels seem to be highly correlated, indicating a tight coregulation and transcriptional control. CONCLUSIONS: In obese subjects, insulin resistance and hyperinsulinemia are strongly associated with ATGL and HSL mRNA and protein expression, independent of fat mass. Data on weight reduction indicated that also other factors (e.g. leptin) relate to ATGL and HSL protein expression.


Asunto(s)
Tejido Adiposo/enzimología , Resistencia a la Insulina/fisiología , Lipasa/metabolismo , Obesidad/metabolismo , Esterol Esterasa/metabolismo , Tejido Adiposo/patología , Adulto , Biopsia , Dieta Reductora , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Hiperinsulinismo/dietoterapia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Lipasa/genética , Masculino , Persona de Mediana Edad , Obesidad/dietoterapia , Obesidad/patología , ARN Mensajero/metabolismo , Análisis de Regresión , Esterol Esterasa/genética , Pérdida de Peso/fisiología
12.
J Clin Endocrinol Metab ; 91(4): 1462-9, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16449343

RESUMEN

BACKGROUND: Obesity may be associated with a lowered use of fat as a fuel, which may contribute to the enlarged adipose tissue stores. AIM: The aim of the present study was to study fatty acid use in the fasting state and in response to a high fat load in a large cohort of obese subjects (n = 701) and a lean reference group (n = 113). METHODS: Subjects from eight European centers underwent a test meal challenge containing 95 en% fat [energy content 50% of estimated resting energy expenditure (EE)]. Fasting and postprandial fat oxidation and circulating metabolites and hormones were determined over a 3-h period. RESULTS: Postprandial fat oxidation (as percent of postprandial EE, adjusted for fat mass, age, gender, center, and energy content of the meal) decreased with increasing body mass index (BMI) category (P < 0.01), an effect present only in those obese subjects with a relatively low fasting fat oxidation (below median, interaction BMI category x fasting fat oxidation, P < 0.001). Fasting fat oxidation increased with increasing BMI category (P < 0.001), which was normalized after adjustment for fat-free mass and fat mass. Furthermore, insulin resistance was positively associated with postprandial fat oxidation (P < 0.05) and negatively associated with fasting fat oxidation (expressed as percent of EE), independent of body composition. CONCLUSIONS: The present data indicate an impaired capacity to regulate fat oxidation in the obese insulin-resistant state, which is hypothesized to play a role in the etiology of both obesity and insulin resistance.


Asunto(s)
Grasas de la Dieta/metabolismo , Grasas de la Dieta/farmacología , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Adulto , Área Bajo la Curva , Composición Corporal/fisiología , Índice de Masa Corporal , Peso Corporal , Femenino , Humanos , Hidrocortisona/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leptina/sangre , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Caracteres Sexuales
13.
Diabetes ; 51(7): 2220-6, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12086953

RESUMEN

Endurance training has been shown to increase fat oxidation both at rest and during exercise. However, most exercise training studies have been performed at high exercise intensity in well-trained athletes, and not much is known about the effect of a low-intensity training program on fat oxidation capacity in lean sedentary humans. Here, we examine the effect of 3-month low-intensity training program on total and intramuscular triglyceride (IMTG)- and/or VLDL-derived fat oxidation capacity and skeletal muscle mRNA expression. Six healthy untrained subjects (aged 43 +/- 2 years, BMI 22.7 +/- 1.1 kg/ m(2), V(O)(2max) 3.2 +/- 0.2 l/min) participated in a supervised 12-week training program at 40% V(O)(2max) three times weekly. Total and plasma-derived fatty acid oxidation at rest and during 1 h exercise was measured using [(13)C]palmitate, and in a separate test, [(13)C]acetate recovery was determined. Muscle biopsies were taken after an overnight fast. Total fat oxidation during exercise increased from 1,241 +/- 93 to 1,591 +/- 130 micromol/min (P = 0.06), and IMTG- and/or VLDL-derived fatty acid oxidation increased from 236 +/- 84 to 639 +/- 172 micromol/min (P = 0.09). Acetyl-CoA carboxylase-2 mRNA expression was significantly decreased after training (P = 0.005), whereas lipoprotein lipase mRNA expression tended to increase (P = 0.07). In conclusion, a minimal amount of physical activity tends to increase fat oxidation and leads to marked changes in the expression of genes encoding for key enzymes in fat metabolism.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Ejercicio Físico/fisiología , Regulación Enzimológica de la Expresión Génica , Resistencia Física , Transcripción Genética , Adulto , Índice de Masa Corporal , Humanos , Lipoproteína Lipasa/genética , Masculino , Persona de Mediana Edad , Músculo Esquelético/enzimología , ARN Mensajero/genética , Valores de Referencia , Factores de Tiempo , Triglicéridos/metabolismo
14.
Am J Clin Nutr ; 82(6): 1244-52, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16332657

RESUMEN

BACKGROUND: Evidence from molecular and animal research and epidemiologic investigations indicates that calcium intake may be inversely related to body weight, possibly through alterations in 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] metabolism. OBJECTIVE: We tested whether energy and substrate metabolism and adipose tissue enzyme messenger RNA (mRNA) expression can be altered by dietary calcium intake in healthy, nonobese, human volunteers consuming an isocaloric diet. DESIGN: Twelve healthy men [age: 28 +/- 2 y; body mass index (BMI; in kg/m(2)): 25.2 +/- 06] received 3 isocaloric diets [high calcium (1259 +/- 9 mg/d), high dairy (high/high); high calcium (1259 +/- 9 mg/d), low dairy (high/low); and low calcium (349 +/- 8 mg/d), low dairy (low/low)] in a randomized crossover design. At the end of the 7-d dietary periods, 24-h energy expenditure and substrate metabolism were measured, and fat biopsy specimens were obtained to determine mRNA expression in genes involved in the lipolytic and lipogenic pathways. RESULTS: The 24-h energy expenditure was 11.8 +/- 0.3, 11.6 +/- 0.3, and 11.7 +/- 0.3 MJ/24 h in the high/high, high/low, and low/low conditions, respectively. Fat oxidation in these conditions was 108 +/- 7, 105 +/- 9, and 100 +/- 6 g/24 h. These differences were not statistically significant. mRNA concentrations of UCP2, FAS, GPDH2, HSL, and PPARG did not differ significantly. Serum 1,25(OH)(2)D(3) concentrations changed from 175 +/- 16 to 138 +/- 15, 181 +/- 23 to 159 +/- 19, and 164 +/- 13 to 198 +/- 19 pmol/L in the high/high, high/low, and low/low conditions, respectively, and was significantly different between the high/high and low/low conditions (P < 0.05). CONCLUSION: Altering the dietary calcium content for 7 d does not influence substrate metabolism, energy metabolism, or gene expression in proteins related to fat metabolism, despite significant changes in 1,25(OH)(2)D(3) concentrations.


Asunto(s)
Tejido Adiposo/metabolismo , Calcio de la Dieta/administración & dosificación , Productos Lácteos , Metabolismo Energético/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica , Metabolismo de los Lípidos/efectos de los fármacos , Tejido Adiposo/enzimología , Adulto , Composición Corporal/efectos de los fármacos , Composición Corporal/fisiología , Calcitriol/sangre , Calorimetría Indirecta/métodos , Estudios Cruzados , Productos Lácteos/análisis , Relación Dosis-Respuesta a Droga , Metabolismo Energético/fisiología , Humanos , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Lípidos/sangre , Masculino , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
15.
Clin Pharmacol Ther ; 71(4): 272-9, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11956510

RESUMEN

OBJECTIVE: Our objective was to investigate the thermogenic efficacy of single oral doses of the novel beta(3)-adrenergic receptor agonist L-796568 [(R )-N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]-phenyl]-4-[4-[4-(trifluoromethyl)phenyl]thiazol-2-yl]-benzenesulfonamide, dihydrochloride] in humans. METHODS: Twelve healthy overweight to obese men participated in this 2-center, 3-period, randomized, placebo-controlled, crossover trial. In each period subjects received 250 mg L-796568, 1000 mg L-796568, or placebo. Energy expenditure and respiratory quotient were determined by indirect calorimetry; blood samples were taken; and ear temperature, heart rate, and blood pressure were measured at baseline and during the 4-hour period after administration. RESULTS: Energy expenditure increased significantly after the 1000-mg dose (about 8%) and this was accompanied by an increase in plasma glycerol and free fatty acid concentrations. Systolic blood pressure also increased significantly. No changes in heart rate, diastolic blood pressure, ear temperature, plasma catecholamine, potassium, or leptin were found. CONCLUSIONS: Single-dose administration of 1000 mg of the novel beta(3)-adrenergic receptor agonist L-796568 increased lipolysis and energy expenditure in overweight men. This is the first study to show such an effect of beta(3)-adrenergic receptor agonists in humans without significant evidence for beta(2)-adrenergic receptor involvement.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 3 , Agonistas Adrenérgicos beta/farmacología , Fármacos Antiobesidad/administración & dosificación , Metabolismo Energético/efectos de los fármacos , Obesidad/metabolismo , Sulfonamidas/administración & dosificación , Tiazoles/administración & dosificación , Administración Oral , Adolescente , Agonistas Adrenérgicos beta/sangre , Adulto , Análisis de Varianza , Fármacos Antiobesidad/sangre , Estudios Cruzados , Humanos , Lipólisis/efectos de los fármacos , Lipólisis/fisiología , Persona de Mediana Edad , Obesidad/tratamiento farmacológico , Sulfonamidas/sangre , Tiazoles/sangre
16.
Metabolism ; 51(8): 1003-10, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12145773

RESUMEN

The aim of the present study was to investigate the effect of long-term continuation of low-intensity exercise training on weight maintenance, substrate metabolism, and beta-adrenergic-mediated fat oxidation in weight-reduced obese men. Preceding this part of the study, subjects lost 15 +/- 6 kg of body weight by energy restriction with or without low-intensity exercise training. Twenty-nine subjects (diet group, n = 15; diet + exercise group, n = 14) participated in the follow-up study of 40 weeks in which the former diet + exercise group continued their exercise training program. Pre- and postfollow-up, measurements of body weight, body composition, maximal aerobic capacity and substrate oxidation during rest, exercise, and recovery with or without infusion of the beta-adrenergic antagonist, propranolol (PRP), were performed. Over the follow-up period, body weight, fat mass, and fat free mass increased in both groups (P <.0001) without differences between groups. Attendance at exercise training sessions was negatively correlated with regain of body weight (r = -.6, P <.05). Relative fat oxidation, energy expenditure, and beta-adrenergic-mediated fat oxidation during rest, exercise, and recovery were maintained over the follow-up period in both groups. Continuation of low-intensity exercise training after weight reduction did not limit regain of body weight, unless exercise training was frequently performed. Relative (beta-adrenergic-mediated) fat oxidation and energy expenditure were maintained at postdiet level whether or not low-intensity exercise training was performed during follow-up.


Asunto(s)
Ejercicio Físico , Grasas/metabolismo , Obesidad/metabolismo , Adulto , Metabolismo Energético , Estudios de Seguimiento , Humanos , Masculino , Oxidación-Reducción , Receptores Adrenérgicos beta/fisiología
17.
Obesity (Silver Spring) ; 19(7): 1350-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21331063

RESUMEN

Disturbances in skeletal muscle lipid metabolism may precede or contribute to the development of whole body insulin resistance. In this study, we examined fasting and postprandial skeletal muscle fatty acid (FA) handling in insulin resistant (IR) men. Thirty men with the metabolic syndrome (MetS) (National Cholesterol Education Program-Adult Treatment Panel III) were included in this sub-study to the LIPGENE study, and divided in two groups (IR and control) based on the median of insulin sensitivity (S(I) = 2.06 (mU/l(-1))·min(-1)·10(-4)). Fasting and postprandial skeletal muscle FA handling were examined by combining the forearm balance technique with stable isotopes of palmitate. [(2)H(2)]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and free FAs (FFAs) in the circulation and [U-(13)C]-palmitate was incorporated in a high-fat mixed meal (2.6 MJ, 61 E% fat) to label chylomicron-TAG. Muscle biopsies were taken to determine muscle TAG, diacylglycerol (DAG), FFA, and phospholipid (PL) content, their fractional synthetic rates (FSRs) and degree of saturation, as well as messenger RNA (mRNA) expression of genes involved in lipid metabolism. In the first 2 h after meal consumption, forearm muscle [(2)H(2)]-labeled TAG extraction was higher in IR vs. control (P = 0.05). Fasting percentage saturation of muscle DAG was higher in IR vs. control (P = 0.016). No differences were observed for intramuscular TAG, DAG, FFA, and PL content, FSR, and muscle mRNA expression. In conclusion, increased muscle (hepatically derived) TAG extraction during postprandial conditions and increased saturation of intramuscular DAG are associated with insulin resistance, suggesting that disturbances in skeletal muscle FA handling could play a role in the development of whole body insulin resistance and type 2 diabetes.


Asunto(s)
Ácidos Grasos/metabolismo , Resistencia a la Insulina , Síndrome Metabólico/metabolismo , Músculo Esquelético/metabolismo , Adulto , Anciano , Estudios de Cohortes , Diglicéridos/sangre , Diglicéridos/metabolismo , Ayuno , Ácidos Grasos/sangre , Humanos , Cinética , Lipoproteínas VLDL/sangre , Lipoproteínas VLDL/metabolismo , Masculino , Persona de Mediana Edad , Periodo Posprandial , Triglicéridos/sangre , Triglicéridos/metabolismo
18.
Proteomics Clin Appl ; 1(10): 1306-15, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21136627

RESUMEN

Differences in fat metabolism are of importance in relation to energy balance. Low fat-oxidizers (LFO) are thought to be more prone for developing obesity. We studied whether LFO have different fasting adipose tissue (AT) protein profiles than high fat-oxidizers (HFO). Six LFO and six HFO subjects were selected from an obese group (n = 99, body mass index>30 kg/m(2) ) taking part in a multi-center study (Nutrient-Gene interaction in human obesity) based on the postprandial fat oxidation capacity after a high fat load. AT protein profiles were studied by 2-DE. Differential proteins were clustered with MAPPfinder according to their function. Protein profiles of purified blood cells and adipocytes served to confine the comparison to adipocyte-specific proteins in AT profiles of LFO and HFO subjects. LFO had increased mitochondrial ROS scavengers possibly related to long-chain unsaturated fatty acid-induced increases in mitochondrial ROS-production. Carbohydrate oxidation seemed to be reduced since expression of several proteins from the glycolysis pathway was lower in LFO. Up-regulation of the valine catabolism at the level of methylmalonate-semialdehyde dehydrogenase appeared to be (part of) the compensatory mechanism. In conclusion, the fasting AT protein profile of LFO and HFO differ at the level of ROS scavenging, the glycolysis pathway and valine metabolism.

19.
Obesity (Silver Spring) ; 15(3): 653-63, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17372316

RESUMEN

OBJECTIVES: To study energy expenditure before and 3 hours after a high-fat load in a large cohort of obese subjects (n = 701) and a lean reference group (n = 113). RESEARCH METHODS AND PROCEDURES: Subjects from seven European countries underwent a 1-day clinical study with a liquid test meal challenge containing 95% fat (energy content was 50% of estimated resting energy expenditure). Fasting and 3-hour postprandial energy expenditures, as well as metabolites and hormones, were determined. RESULTS: Obese subjects had a reduced postprandial energy expenditure after the high-fat load, independent of body composition, age, sex, research center, and resting energy expenditure, whereas within the obese group, thermogenesis increased again with increasing BMI category. Additionally, insulin resistance, habitual physical activity, postprandial plasma triacylglycerols, and insulin were all independently positively related to the postprandial energy expenditure. Resting energy expenditure, adjusted for fat-free mass, increased with degree of obesity, a difference that disappeared after adjustment for fat mass. Furthermore, insulin resistance, fasting plasma free fatty acids, and cortisol were positively associated, whereas fasting plasma leptin and insulin-like growth factor-1 were negatively associated, with resting energy expenditure. DISCUSSION: The 3-hour fat-induced thermogenic response is reduced in obesity. It remains to be determined whether this blunted thermogenic response is a contributory factor or an adaptive response to the obese state.


Asunto(s)
Adipocitos/fisiología , Obesidad/fisiopatología , Termogénesis/fisiología , Adulto , Metabolismo Basal/fisiología , Índice de Masa Corporal , Metabolismo Energético/fisiología , Ácidos Grasos no Esterificados/sangre , Femenino , Humanos , Hidrocortisona/sangre , Insulina/sangre , Masculino , Persona de Mediana Edad , Obesidad/sangre , Periodo Posprandial , Triglicéridos/sangre
20.
Eur J Appl Physiol ; 96(5): 525-34, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16369816

RESUMEN

Resistance exercise has recently been shown to improve whole-body insulin sensitivity in healthy males. Whether this is accompanied by an exercise-induced decline in skeletal muscle glycogen and/or lipid content remains to be established. In the present study, we determined fibre-type-specific changes in skeletal muscle substrate content following a single resistance exercise session. After an overnight fast, eight untrained healthy lean males participated in a approximately 45 min resistance exercise session. Muscle biopsies were collected before, following cessation of exercise, and after 30 and 120 min of post-exercise recovery. Subjects remained fasted throughout the test. Conventional light and (immuno)fluorescence microscopy were applied to assess fibre-type-specific changes in intramyocellular triacylglycerol (IMTG) and glycogen content. A significant 27+/-7% net decline in IMTG content was observed in the type I muscle fibres (P<0.05), with no net changes in the type IIa and IIx fibres. Muscle glycogen content decreased with 23+/-6, 40+/-7 and 44+/-7% in the type I, IIa and IIx muscle fibres, respectively (P<0.05). Fibre-type-specific changes in intramyocellular lipid and/or glycogen content correlated well with muscle fibre-type oxidative capacity. During post-exercise recovery, type I muscle fibre lipid content returned to pre-exercise levels within 120 min. No changes in muscle glycogen content were observed during recovery. We conclude that intramyocellular lipid and glycogen stores are readily used during resistance exercise and this is likely associated with the reported increase in whole-body insulin sensitivity following resistance exercise.


Asunto(s)
Ejercicio Físico/fisiología , Glucógeno/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Triglicéridos/metabolismo , Adulto , Biopsia , Glucemia , Ácidos Grasos no Esterificados/sangre , Humanos , Ácido Láctico/sangre , Masculino , Células Musculares/citología , Músculo Esquelético/citología , Fosforilación Oxidativa , Aptitud Física/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda