Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 142(4): 515-6, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20723752

RESUMEN

The mechanism by which voltage-dependent ion channels sense membrane potentials has been the most intensively studied and debated topic in modern ion channel research. In this issue, Xu et al. (2010) provide new insights into the minimal topological and physicochemical features required for voltage sensing.

2.
Proc Natl Acad Sci U S A ; 115(35): E8201-E8210, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30108148

RESUMEN

The transient receptor potential ion channel subfamily M, member 7 (TRPM7), is a ubiquitously expressed protein that is required for mouse embryonic development. TRPM7 contains both an ion channel and an α-kinase. The channel domain comprises a nonselective cation channel with notable permeability to Mg2+ and Zn2+ Here, we report the closed state structures of the mouse TRPM7 channel domain in three different ionic conditions to overall resolutions of 3.3, 3.7, and 4.1 Å. The structures reveal key residues for an ion binding site in the selectivity filter, with proposed partially hydrated Mg2+ ions occupying the center of the conduction pore. In high [Mg2+], a prominent external disulfide bond is found in the pore helix, which is essential for ion channel function. Our results provide a structural framework for understanding the TRPM1/3/6/7 subfamily and extend the knowledge base upon which to study the diversity and evolution of TRP channels.


Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Evolución Molecular , Canales Catiónicos TRPM/química , Animales , Ratones , Dominios Proteicos , Canales Catiónicos TRPM/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(32): 13008-13, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23882077

RESUMEN

Potassium (i.e., K(+)) channels allow for the controlled and selective passage of potassium ions across the plasma membrane via a conserved pore domain. In voltage-gated K(+) channels, gating is the result of the coordinated action of two coupled gates: an activation gate at the intracellular entrance of the pore and an inactivation gate at the selectivity filter. By using solid-state NMR structural studies, in combination with electrophysiological experiments and molecular dynamics simulations, we show that the turret region connecting the outer transmembrane helix (transmembrane helix 1) and the pore helix behind the selectivity filter contributes to K(+) channel inactivation and exhibits a remarkable structural plasticity that correlates to K(+) channel inactivation. The transmembrane helix 1 unwinds when the K(+) channel enters the inactivated state and rewinds during the transition to the closed state. In addition to well-characterized changes at the K(+) ion coordination sites, this process is accompanied by conformational changes within the turret region and the pore helix. Further spectroscopic and computational results show that the same channel domain is critically involved in establishing functional contacts between pore domain and the cellular membrane. Taken together, our results suggest that the interaction between the K(+) channel turret region and the lipid bilayer exerts an important influence on the selective passage of potassium ions via the K(+) channel pore.


Asunto(s)
Activación del Canal Iónico/fisiología , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Canales de Potasio/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Femenino , Activación del Canal Iónico/genética , Canal de Potasio Kv1.3/química , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Oocitos/metabolismo , Oocitos/fisiología , Canales de Potasio/genética , Canales de Potasio/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Xenopus
4.
Chemistry ; 21(37): 12971-7, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26315337

RESUMEN

Dynamic nuclear polarization (DNP) has been shown to greatly enhance spectroscopic sensitivity, creating novel opportunities for NMR studies on complex and large molecular assemblies in life and material sciences. In such applications, however, site-specificity and spectroscopic resolution become critical factors that are usually difficult to control by current DNP-based approaches. We have examined in detail the effect of directly attaching mono- or biradicals to induce local paramagnetic relaxation effects and, at the same time, to produce sizable DNP enhancements. Using a membrane-embedded ion channel as an example, we varied the degree of paramagnetic labeling and the location of the DNP probes. Our results show that the creation of local spin clusters can generate sizable DNP enhancements while preserving the intrinsic benefits of paramagnetic relaxation enhancement (PRE)-based NMR approaches. DNP using chemical labeling may hence provide an attractive route to introduce molecular specificity into DNP studies in life science applications and beyond.


Asunto(s)
Proteínas de la Membrana/química , Marcadores de Spin , Espectroscopía de Resonancia por Spin del Electrón , Microscopía de Polarización , Resonancia Magnética Nuclear Biomolecular
5.
Biochemistry ; 53(16): 2557-9, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24621378

RESUMEN

The potassium channel KcsA offers a unique opportunity to explicitly study the dynamics of the moving parts of ion channels, yet our understanding of the extent and dynamic behavior of the physiologically relevant structural changes at the inner gate in KcsA remains incomplete. Here, we use electron paramagnetic resonance, nuclear magnetic resonance, and molecular dynamics simulations to characterize the extent of pH-dependent conformational changes of the inner gate in lipid bilayers or detergent micelles. Our results show that under physiological conditions the inner gate experiences a maximal diagonal opening of ∼24 Šwith the largest degree of dynamics near the pKa of activation (pH ∼3.9). These results extend the observation that the C-terminus is necessary to limit the extent of opening and imply that the inner gate regulates the extent of conformational change at the zone of allosteric coupling and at the selectivity filter.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
6.
J Am Chem Soc ; 134(39): 16360-9, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22946877

RESUMEN

Distance determination from an echo intensity modulation obtained by pulsed double electron-electron resonance (DEER) experiment is a mathematically ill-posed problem. Tikhonov regularization yields distance distributions that can be difficult to interpret, especially in a system with multiple discrete distance distributions. Here, we show that by using geometric fit constraints in symmetric homo-oligomeric protein systems, we were able to increase the accuracy of a model-based fit solution based on a sum of Rice distributions. Our approach was validated on two different ion channels of known oligomeric states, KcsA (tetramer) and CorA (pentamer). Statistical analysis of the resulting fits was integrated within our method to help the experimenter evaluate the significance of a symmetry-constrained vs standard model distribution fit and to examine multidistance confidence regions. This approach was used to quantitatively evaluate the role of the C-terminal domain (CTD) on the flexibility and conformation of the activation gate of the K(+) channel KcsA. Our analysis reveals a significant increase in the dynamics of the inner bundle gate upon opening. Also, it explicitly demonstrates the degree to which the CTD restricts the motion of the lower gate at rest and during activation gating.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Activación del Canal Iónico , Canales de Potasio/química , Canales de Potasio/metabolismo , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Streptomyces lividans
7.
J Neurosci ; 28(47): 12199-211, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19020014

RESUMEN

In brain, monomeric immunoglobin G (IgG) is regarded as quiescent and only poised to initiate potentially injurious inflammatory reactions via immune complex formation associated with phagocytosis and tumor necrosis factor alpha (TNF-alpha) production in response to disease. Using rat hippocampal slice and microglial cultures, here we show instead that physiological levels (i.e., 0.2-20 microg/ml) of monomeric IgG unassociated with disease triggered benign low-level proinflammatory signaling that was neuroprotective against CA1 area excitotoxicity and followed a U-shaped or hormetic dose-response. The data indicate that physiological IgG levels activated microglia by enhancing recycling endocytosis plus TNF-alpha release from these cells to produce the neuroprotection. Minocycline, known for its anti-inflammatory and neuroprotective effects when given after disease onset, abrogated IgG-mediated neuroprotection and related microglial effects when given before injury. In contrast, E-prostanoid receptor subtype 2 (EP2) activation, which served as an exemplary paracrine stimulus like the one expected from neuronal activity, amplified IgG-mediated increased microglial recycling endocytosis and TNF-alpha production. Furthermore, like monomeric IgG these EP2 related effects took days to be effective, suggesting both were adaptive anabolic effects consistent with those seen from other long-term preconditioning stimuli requiring de novo protein synthesis. The data provide the first evidence that brain monomeric IgG at physiological levels can have signaling function via enhanced recycling endocytosis/TNF-alpha production from microglia unassociated with disease and that these IgG-mediated changes may be a means by which paracrine signaling from neuronal activity influences microglia to evoke neuroprotection. The data provide further support that low-level proinflammatory neural immune signaling unassociated with disease enhances brain function.


Asunto(s)
Endocitosis/fisiología , Inmunoglobulina G/farmacología , Microglía/efectos de los fármacos , Microglía/fisiología , Fármacos Neuroprotectores/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células Cultivadas , Dinoprostona/farmacología , Relación Dosis-Respuesta a Droga , Ectodisplasinas/metabolismo , Endocitosis/efectos de los fármacos , Glucosa/deficiencia , Hipocampo , Hipoxia , Inmunoglobulina G/líquido cefalorraquídeo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Minociclina/farmacología , N-Metilaspartato/toxicidad , Neurotoxinas/toxicidad , Técnicas de Cultivo de Órganos , Fosfopiruvato Hidratasa/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Proteínas de Unión al GTP rab/metabolismo
8.
Elife ; 72018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-30004384

RESUMEN

We report the near atomic resolution (3.3 Å) of the human polycystic kidney disease 2-like 1 (polycystin 2-l1) ion channel. Encoded by PKD2L1, polycystin 2-l1 is a calcium and monovalent cation-permeant ion channel in primary cilia and plasma membranes. The related primary cilium-specific polycystin-2 protein, encoded by PKD2, shares a high degree of sequence similarity, yet has distinct permeability characteristics. Here we show that these differences are reflected in the architecture of polycystin 2-l1.


Asunto(s)
Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Receptores de Superficie Celular/ultraestructura , Calcio , Canales de Calcio/química , Canales de Calcio/metabolismo , Cationes/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo
9.
J Neurosci ; 25(15): 3952-61, 2005 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-15829647

RESUMEN

Spreading depression (SD) involves current flow through principal neurons, but the pattern of current flow over the expanse of susceptible tissues or individual principal neurons remains undefined. Accordingly, tissue and single cell maps made from digital imaging of voltage-sensitive dye changes in hippocampal organotypic cultures undergoing SD were processed via optical current source density analysis to reveal the currents associated with pyramidal neurons. Two distinctive current flow patterns were seen. The first was a trilaminar pattern (420 microm2) that developed with the onset of SD in CA3 pyramidal neurons, in which SD most often began. This initial pattern comprised a somatic current sink with current sources to either side in the dendrites that lasted for seconds extending into the first aspect of the classical "inverted saddle" interstitial direct current waveform of SD. Next, the somatic sink backpropagated at a speed of millimeters per minute into the proximal dendrites, resulting in a reversal of the initial current flow pattern to its second orientation, namely dendritic sinks associated with a somatic source. The latter persisted for the remainder of SD in CA3 and was the only pattern seen in CA1, in which SD was rarely initiated. This backpropagating SD current flow resembles that of activity-dependent synaptic activation. Retrograde and associative signaling via principal neuron current flow is a key means to affect tissue function, including synaptic activation and, by extension, perhaps SD. Such current-related postsynaptic signaling might not only help explain SD but also neuroprotection and migraine, two phenomena increasingly recognized as being related to SD.


Asunto(s)
Depresión de Propagación Cortical/fisiología , Hipocampo/citología , Células Piramidales/fisiología , Animales , Animales Recién Nacidos , Diagnóstico por Imagen/métodos , Estimulación Eléctrica/métodos , Inmunohistoquímica/métodos , Lisina/análogos & derivados , Lisina/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Modelos Neurológicos , Proteínas de Neurofilamentos/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar , Estadísticas no Paramétricas , Estirenos/metabolismo , Factores de Tiempo
10.
J Cereb Blood Flow Metab ; 24(8): 829-39, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15362713

RESUMEN

Cytokines are involved in ischemic tolerance, including that triggered by spreading depression (SD), yet their roles in neuroprotection remain incompletely defined. The latter may stem from the pleiotropic nature of these signaling molecules whose complexities for interaction might be better deciphered through simultaneous measurement of multiple targeted proteins. Accordingly, the authors used microsphere-based flow cytometric immunoassays and hippocampal organotypic cultures (HOTCs) to characterize the magnitude, time course, and diversity of cytokine (interleukin [IL] 1alpha, IL-1beta, IL-2, IL-4, IL-6, IL-10, granulocyte-macrophage colony-stimulating factor [GM-CSF], interferon-gamma [IFN-gamma], and tumor necrosis factor-alpha [TNF-alpha]) response to SD. GM-CSF was not detected in HOTCs or media. However, SD triggered a significant, generalized increase in seven cytokines evident in HOTCs 6 hours later, with the remaining cytokine, IL-1beta, becoming significantly different at 1 and 3 days. Additionally, these changes extended to include surrounding media for IL-6 and TNF-alpha by 1 and 3 days. This increase was localized to microglia via immunostaining for IL-1alpha, IL-1beta, and interferon-y. IL-10, although significantly more abundant in HOTCs 6 hours after SD, was significantly less abundant in surrounding media at that time and at 1 day. Finally, the generalized early increase in tissue cytokines later settled to a pattern at 3 days of recovery centering on changes in IL-1alpha, IL-1beta, and TNF-alpha, cytokines capable of modulating ischemic injury.


Asunto(s)
Depresión de Propagación Cortical/fisiología , Citocinas/biosíntesis , Hipocampo/fisiología , Animales , Estimulación Eléctrica , Electrofisiología , Citometría de Flujo , Inmunoensayo , Inmunohistoquímica , Microesferas , Técnicas de Cultivo de Órganos
11.
Nat Struct Mol Biol ; 21(3): 244-52, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24487958

RESUMEN

The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.


Asunto(s)
Ciona intestinalis/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Electrofisiología , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Oocitos/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática , Xenopus laevis/metabolismo
12.
Vitam Horm ; 80: 635-48, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19251053

RESUMEN

The short half-life of insulin in the human body (4-6 min) prompted the search and discovery of insulin-degrading enzyme (IDE), a 110-kDa metalloprotease that can rapidly degrade insulin into inactive fragments. Genetic and biochemical evidence accumulated in the last sixty years has implicated IDE as an important physiological contributor in the maintenance of insulin levels. Recent structural and biochemical analyses reveal the molecular basis of how IDE uses size and charge distribution of the catalytic chamber and structural flexibility of substrates to selectively recognize and degrade insulin, as well as the regulatory mechanisms of this enzyme. These studies provide a path for potential therapeutics in the control of insulin metabolism by the degradation of insulin.


Asunto(s)
Insulisina/química , Insulisina/metabolismo , Animales , Regulación Enzimológica de la Expresión Génica , Humanos , Insulina/metabolismo , Insulisina/genética , Ratones , Modelos Moleculares , Conformación Proteica , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda