RESUMEN
We examine the health implications of electricity generation from the 2018 stock of coal-fired power plants in India, as well as the health impacts of the expansion in coal-fired generation capacity expected to occur by 2030. We estimate emissions of SO2, NOX, and particulate matter 2.5 µm (PM2.5) for each plant and use a chemical transport model to estimate the impact of power plant emissions on ambient PM2.5 Concentration-response functions from the 2019 Global Burden of Disease (GBD) are used to project the impacts of changes in PM2.5 on mortality. Current plus planned plants will contribute, on average, 13% of ambient PM2.5 in India. This reflects large absolute contributions to PM2.5 in central India and parts of the Indo-Gangetic plain (up to 20 µg/m3). In the south of India, coal-fired power plants account for 20-25% of ambient PM2.5 We estimate 112,000 deaths are attributable annually to current plus planned coal-fired power plants. Not building planned plants would avoid at least 844,000 premature deaths over the life of these plants. Imposing a tax on electricity that reflects these local health benefits would incentivize the adoption of renewable energy.
Asunto(s)
Carbón Mineral , Centrales Eléctricas , Geografía , India/epidemiología , Mortalidad , Material Particulado/análisisRESUMEN
Under the next cycle of target setting under the Paris Agreement, countries will be updating and submitting new nationally determined contributions (NDCs) over the coming year. To this end, there is a growing need for the United States to assess potential pathways toward a new, maximally ambitious 2035 NDC. In this study, we use an integrated assessment model with state-level detail to model existing policies from both federal and non-federal actors, including the Inflation Reduction Act, Bipartisan Infrastructure Law, and key state policies, across all sectors and gases. Additionally, we develop a high-ambition scenario, which includes new and enhanced policies from these actors. We find that existing policies can reduce net greenhouse gas (GHG) emissions by 44% (with a range of 37% to 52%) by 2035, relative to 2005 levels. The high-ambition scenario can deliver net GHG reductions up to 65% (with a range of 59% to 71%) by 2035 under accelerated implementation of federal regulations and investments, as well as state policies such as renewable portfolio standards, EV sales targets, and zero-emission appliance standards. This level of reductions would provide a basis for continued progress toward the country's 2050 net-zero emissions goal.