RESUMEN
BACKGROUND: The intestine occupies the critical interface between cholesterol absorption and excretion. Surprisingly little is known about the role of de novo cholesterol synthesis in this organ, and its relationship to whole body cholesterol homeostasis. Here, we investigate the physiological importance of this pathway through genetic deletion of the rate-limiting enzyme. METHODS: Mice lacking 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) in intestinal villus and crypt epithelial cells were generated using a Villin-Cre transgene. Plasma lipids, intestinal morphology, mevalonate pathway metabolites, and gene expression were analyzed. RESULTS: Mice with intestine-specific loss of Hmgcr were markedly smaller at birth, but gain weight at a rate similar to wild-type littermates, and are viable and fertile into adulthood. Intestine lengths and weights were greater relative to body weight in both male and female Hmgcr intestinal knockout mice. Male intestinal knockout had decreased plasma cholesterol levels, whereas fasting triglycerides were lower in both sexes. Lipidomics revealed substantial reductions in numerous nonsterol isoprenoids and sterol intermediates within the epithelial layer, but cholesterol levels were preserved. Hmgcr intestinal knockout mice also showed robust activation of SREBP-2 (sterol-regulatory element binding protein-2) target genes in the epithelium, including the LDLR (low-density lipoprotein receptor). At the cellular level, loss of Hmgcr is compensated for quickly after birth through a dramatic expansion of the stem cell compartment, which persists into adulthood. CONCLUSIONS: Loss of Hmgcr in the intestine is compatible with life through compensatory increases in intestinal absorptive surface area, LDLR expression, and expansion of the resident stem cell compartment.
Asunto(s)
Intestinos , Células Madre , Acilcoenzima A , Animales , Colesterol , Femenino , Masculino , Ratones , EsterolesRESUMEN
PURPOSE OF REVIEW: This review examines recent progress in somatic genome editing for cardiovascular disease. We briefly highlight new gene editing approaches, delivery systems, and potential targets in the liver. RECENT FINDINGS: In recent years, new editing and delivery systems have been applied successfully in model organisms to modify genes within hepatocytes. Disruption of several genes has been shown to dramatically lower plasma cholesterol and triglyceride levels in mice as well as non-human primates. More precise modification of cardiovascular targets has also been achieved through homology-directed repair or base editing. Improved viral vectors and nanoparticle delivery systems are addressing important delivery challenges and helping to mitigate safety concerns. Liver-directed genome editing has the potential to cure both rare and common forms of cardiovascular disease. Exciting progress is already being made, including promising results from preclinical studies and the initiation of human gene therapy trials.
Asunto(s)
Sistemas CRISPR-Cas , Enfermedades Cardiovasculares , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Edición Génica/métodos , Humanos , Hígado , RatonesRESUMEN
Adeno-associated viral (AAV) vectors are a leading candidate for the delivery of CRISPR-Cas9 for therapeutic genome editing in vivo. However, AAV-based delivery involves persistent expression of the Cas9 nuclease, a bacterial protein. Recent studies indicate a high prevalence of neutralizing antibodies and T cells specific to the commonly used Cas9 orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans. We tested in a mouse model whether pre-existing immunity to SaCas9 would pose a barrier to liver genome editing with AAV packaging CRISPR-Cas9. Although efficient genome editing occurred in mouse liver with pre-existing SaCas9 immunity, this was accompanied by an increased proportion of CD8+ T cells in the liver. This cytotoxic T cell response was characterized by hepatocyte apoptosis, loss of recombinant AAV genomes, and complete elimination of genome-edited cells, and was followed by compensatory liver regeneration. Our results raise important efficacy and safety concerns for CRISPR-Cas9-based in vivo genome editing in the liver.
Asunto(s)
Proteína 9 Asociada a CRISPR/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Dependovirus/genética , Edición Génica/métodos , Vectores Genéticos/genética , Animales , Biomarcadores , Proteína 9 Asociada a CRISPR/efectos adversos , Expresión Génica , Orden Génico , Hepatocitos/metabolismo , Humanos , Inmunización , Memoria Inmunológica , Inmunofenotipificación , Ratones , ARN Guía de Kinetoplastida , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , TransgenesRESUMEN
HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.
Asunto(s)
Estrés del Retículo Endoplásmico/genética , Hidroximetilglutaril-CoA Reductasas/deficiencia , Hidroximetilglutaril-CoA Reductasas/genética , Hígado/metabolismo , Terpenos/metabolismo , Eliminación de GenRESUMEN
Objective- Atherosclerosis studies in Ldlr knockout mice require breeding to homozygosity and congenic status on C57BL6/J background, a process that is both time and resource intensive. We aimed to develop a new method for generating atherosclerosis through somatic deletion of Ldlr in livers of adult mice. Approach and Results- Overexpression of PCSK9 (proprotein convertase subtilisin/kexin type 9) is currently used to study atherosclerosis, which promotes degradation of LDLR (low-density lipoprotein receptor) in the liver. We sought to determine whether CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated 9) could also be used to generate atherosclerosis through genetic disruption of Ldlr in adult mice. We engineered adeno-associated viral (AAV) vectors expressing Staphylococcus aureus Cas9 and a guide RNA targeting the Ldlr gene (AAV-CRISPR). Both male and female mice received either (1) saline, (2) AAV-CRISPR, or (3) AAV-hPCSK9 (human PCSK9)-D374Y. A fourth group of germline Ldlr-KO mice was included for comparison. Mice were placed on a Western diet and followed for 20 weeks to assess plasma lipids, PCSK9 protein levels, atherosclerosis, and editing efficiency. Disruption of Ldlr with AAV-CRISPR was robust, resulting in severe hypercholesterolemia and atherosclerotic lesions in the aorta. AAV-hPCSK9 also produced hypercholesterolemia and atherosclerosis as expected. Notable sexual dimorphism was observed, wherein AAV-CRISPR was superior for Ldlr removal in male mice, while AAV-hPCSK9 was more effective in female mice. Conclusions- This all-in-one AAV-CRISPR vector targeting Ldlr is an effective and versatile tool to model atherosclerosis with a single injection and provides a useful alternative to the use of germline Ldlr-KO mice.
Asunto(s)
Aterosclerosis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Vectores Genéticos , Receptores de LDL/genética , Adenoviridae , Animales , Aterosclerosis/sangre , Proteína 9 Asociada a CRISPR/genética , Femenino , Edición Génica , Expresión Génica , Hipercolesterolemia/sangre , Hipercolesterolemia/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proproteína Convertasa 9/sangre , Proproteína Convertasa 9/genética , Receptores de LDL/sangreRESUMEN
Targeting the Kv1.3 potassium channel has proven effective in reducing obesity and the severity of animal models of autoimmune disease. Stichodactyla toxin (ShK), isolated from the sea anemone Stichodactyla helianthus, is a potent blocker of Kv1.3. Several of its analogs are some of the most potent and selective blockers of this channel. However, like most biologics, ShK and its analogs require injections for their delivery, and repeated injections reduce patient compliance during the treatment of chronic diseases. We hypothesized that inducing the expression of an ShK analog by hepatocytes would remove the requirement for frequent injections and lead to a sustained level of Kv1.3 blocker in the circulation. To this goal, we tested the ability of Adeno-Associated Virus (AAV)8 vectors to target hepatocytes for expressing the ShK analog, ShK-235 (AAV-ShK-235) in rodents. We designed AAV8 vectors expressing the target transgene, ShK-235, or Enhanced Green fluorescent protein (EGFP). Transduction of mouse livers led to the production of sufficient levels of functional ShK-235 in the serum from AAV-ShK-235 single-injected mice to block Kv1.3 channels. However, AAV-ShK-235 therapy was not effective in reducing high-fat diet-induced obesity in mice. In addition, injection of even high doses of AAV8-ShK-235 to rats resulted in a very low liver transduction efficiency and failed to reduce inflammation in a well-established rat model of delayed-type hypersensitivity. In conclusion, the AAV8-based delivery of ShK-235 was highly effective in inducing the secretion of functional Kv1.3-blocking peptide in mouse, but not rat, hepatocytes yet did not reduce obesity in mice fed a high-fat diet.
Asunto(s)
Enfermedades Autoinmunes , Dependovirus , Ratas , Ratones , Animales , Péptidos/farmacología , Enfermedades Autoinmunes/tratamiento farmacológico , Obesidad , HígadoRESUMEN
Here we show that striated muscle preferentially expressed protein kinase α (Spegα) maintains cardiac function in hearts with Spegß deficiency. Speg is required for stability of excitation-contraction coupling (ECC) complexes and interacts with esterase D (Esd), Cardiomyopathy-Associated Protein 5 (Cmya5), and Fibronectin Type III and SPRY Domain Containing 2 (Fsd2) in cardiac and skeletal muscle. Mice with a sequence encoding a V5/HA tag inserted into the first exon of the Speg gene (HA-Speg mice) display a >90% decrease in Spegß but Spegα is expressed at ~50% of normal levels. Mice deficient in both Spegα and Speg ß (Speg KO mice) develop a severe dilated cardiomyopathy and muscle weakness and atrophy, but HA-Speg mice display mild muscle weakness with no cardiac involvement. Spegα in HA-Speg mice suppresses Ca2+ leak, proteolytic cleavage of Jph2, and disruption of transverse tubules. Despite it's low levels, HA-Spegß immunoprecipitation identified Esd, Cmya5 and Fsd2 as Spegß binding partners that localize to triads and dyads to stabilize ECC complexes. This study suggests that Spegα and Spegß display functional redundancy, identifies Esd, Cmya5 and Fsd2 as components of both cardiac dyads and skeletal muscle triads and lays the groundwork for the identification of new therapeutic targets for centronuclear myopathy.
Asunto(s)
Cardiomiopatía Dilatada , Animales , Ratones , Exones , Corazón , Inmunoprecipitación , Debilidad Muscular , Proteínas Musculares , Quinasa de Cadena Ligera de Miosina , Péptidos y Proteínas de Señalización IntracelularRESUMEN
Homology Directed Repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested "Repair Drive", a novel method for improving targeted gene insertion in the liver by selectively expanding correctly repaired hepatocytes in vivo. Our system consists of transient conditioning of the liver by knocking down an essential gene, and delivery of an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive dramatically increases the percentage of correctly targeted hepatocytes, up to 25%. This resulted in a five-fold increased expression of a therapeutic transgene. Repair Drive was well-tolerated and did not induce toxicity or tumorigenesis in long term follow up. This approach will broaden the range of liver diseases that can be treated with somatic genome editing.
RESUMEN
Lipoprotein(a) (Lp(a)) represents a unique subclass of circulating lipoprotein particles and consists of an apolipoprotein(a) (apo(a)) molecule covalently bound to apolipoprotein B-100. The metabolism of Lp(a) particles is distinct from that of low-density lipoprotein (LDL) cholesterol, and currently approved lipid-lowering drugs do not provide substantial reductions in Lp(a), a causal risk factor for cardiovascular disease. Somatic genome editing has the potential to be a one-time therapy for individuals with extremely high Lp(a). We generated an LPA transgenic mouse model expressing apo(a) of physiologically relevant size. Adeno-associated virus (AAV) vector delivery of CRISPR-Cas9 was used to disrupt the LPA transgene in the liver. AAV-CRISPR nearly completely eliminated apo(a) from the circulation within a week. We performed genome-wide off-target assays to determine the specificity of CRISPR-Cas9 editing within the context of the human genome. Interestingly, we identified intrachromosomal rearrangements within the LPA cDNA in the transgenic mice as well as in the LPA gene in HEK293T cells, due to the repetitive sequences within LPA itself and neighboring pseudogenes. This proof-of-concept study establishes the feasibility of using CRISPR-Cas9 to disrupt LPA in vivo, and highlights the importance of examining the diverse consequences of CRISPR cutting within repetitive loci and in the genome globally.
RESUMEN
Clinical application of somatic genome editing requires therapeutics that are generalizable to a broad range of patients. Targeted insertion of promoterless transgenes can ensure that edits are permanent and broadly applicable while minimizing risks of off-target integration. In the liver, the Albumin (Alb) locus is currently the only well-characterized site for promoterless transgene insertion. Here, we target the Apoa1 locus with adeno-associated viral (AAV) delivery of CRISPR-Cas9 and achieve rates of 6% to 16% of targeted hepatocytes, with no evidence of toxicity. We further show that the endogenous Apoa1 promoter can drive robust and sustained expression of therapeutic proteins, such as apolipoprotein E (APOE), dramatically reducing plasma lipids in a model of hypercholesterolemia. Finally, we demonstrate that Apoa1-targeted fumarylacetoacetate hydrolase (FAH) can correct and rescue the severe metabolic liver disease hereditary tyrosinemia type I. In summary, we identify and validate Apoa1 as a novel integration site that supports durable transgene expression in the liver for gene therapy applications.
RESUMEN
Methylmalonic acidemia (MMA) is a metabolic disorder most commonly caused by mutations in the methylmalonyl-CoA mutase (MMUT) gene. Although adeno-associated viral (AAV) gene therapy has been effective at correcting the disease phenotype in MMA mouse models, clinical translation may be impaired by loss of episomal transgene expression and magnified by the need to treat patients early in life. To achieve permanent correction, we developed a dual AAV strategy to express a codon-optimized MMUT transgene from Alb and tested various CRISPR-Cas9 genome-editing vectors in newly developed knockin mouse models of MMA. For one target site in intron 1 of Alb, we designed rescue cassettes expressing MMUT behind a 2A-peptide or an internal ribosomal entry site sequence. A second guide RNA targeted the initiator codon, and the donor cassette encompassed the proximal albumin promoter in the 5' homology arm. Although all editing approaches were therapeutic, targeting the start codon of albumin allowed the use of a donor cassette that also functioned as an episome and after homologous recombination, even without the expression of Cas9, as an integrant. Targeting the albumin locus using these strategies would be effective for other metabolic disorders where early treatment and permanent long-term correction are needed.
RESUMEN
OBJECTIVE: Apolipoprotein A1 (APOA1) is essential to reverse cholesterol transport, a physiologically important process that protects against atherosclerotic cardiovascular disease. APOA1 is a 28 kDa protein comprising multiple lipid-binding amphiphatic helices initialized by proline residues, which are conserved across multiple species. We tested the hypothesis that the evolutionarily conserved residues are essential to high density lipoprotein (HDL) function. APPROACH: We used biophysical and physiological assays of the function of APOA1PâA variants, i.e., rHDL formation via dimyristoylphosphatidylcholine (DMPC) microsolubilization, activation of lecithin: cholesterol acyltransferase, cholesterol efflux from human monocyte-derived macrophages (THP-1) to each variant, and comparison of the size and composition of HDL from APOA1-/- mice receiving adeno-associated virus delivery of each human variant. RESULTS: Differences in microsolubilization were profound and showed that conserved prolines, especially those in the C-terminus of APOA1, are essential to efficient rHDL formation. In contrast, PâA substitutions produced small changes (-25 to +25%) in rates of cholesterol efflux and no differences in the rates of LCAT activation. The HDL particles formed following ectopic expression of each variant in APOA1-/- mice were smaller and more heterogeneous than those from control animals. CONCLUSION: Studies of DMPC microsolubilization show that proline residues are essential to the optimal interaction of APOA1 with membranes, the initial step in cholesterol efflux and HDL production. In contrast, PâA substitutions modestly reduce the cholesterol efflux capacity of APOA1, have no effect on LCAT activation, but according to the profound reduction in the size of HDL formed in vivo, PâA substitutions alter HDL biogenesis, thereby implicating other cellular and in vivo processes as determinants of HDL metabolism and function.
Asunto(s)
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/metabolismo , Secuencia de Aminoácidos , Animales , Apolipoproteína A-I/química , Células Cultivadas , Colesterol/metabolismo , Secuencia Conservada , Humanos , Ratones , Modelos MolecularesRESUMEN
It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer.
Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Linaje de la Célula , Hígado/citología , Hígado/fisiología , Regeneración/fisiología , Animales , Neoplasias de los Conductos Biliares/patología , Conductos Biliares/metabolismo , Diferenciación Celular , Proliferación Celular , Colangiocarcinoma/patología , Regulación hacia Abajo/genética , Hepatocitos/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Esferoides Celulares/citología , Células Madre/citología , Células Madre/metabolismo , Regulación hacia Arriba/genéticaRESUMEN
Adeno-associated viral (AAV) vectors packaging the CRISPR-Cas9 system (AAV-CRISPR) can efficiently modify disease-relevant genes in somatic tissues with high efficiency. AAV vectors are a preferred delivery vehicle for tissue-directed gene therapy because of their ability to achieve sustained expression from largely non-integrating episomal genomes. However, for genome editizng applications, permanent expression of non-human proteins such as the bacterially derived Cas9 nuclease is undesirable. Methods are needed to achieve efficient genome editing in vivo, with controlled transient expression of CRISPR-Cas9. Here, we report a self-deleting AAV-CRISPR system that introduces insertion and deletion mutations into AAV episomes. We demonstrate that this system dramatically reduces the level of Staphylococcus aureus Cas9 protein, often greater than 79%, while achieving high rates of on-target editing in the liver. Off-target mutagenesis was not observed for the self-deleting Cas9 guide RNA at any of the predicted potential off-target sites examined. This system is efficient and versatile, as demonstrated by robust knockdown of liver-expressed proteins in vivo. This self-deleting AAV-CRISPR system is an important proof of concept that will help enable translation of liver-directed genome editing in humans.
RESUMEN
OBJECTIVES: We developed and validated the use of synthetic urine as a matrix substitute for standard and quality control material preparation in the clinical assessment of iodine status in urine. DESIGN AND METHODS: Measurement of iodine in urine was conducted using inductively coupled-plasma mass spectrometry. Analytical and clinical recoveries were assessed to investigate comparability between synthetic urine and pooled patient urine. Method performance characteristics were determined in accordance with clinical laboratory standards. RESULTS: Established assay performance characteristics included inter- and intra-assay imprecision <10%, carryover of <0.2%, analytical measurement range of 5 to 1000µg/L, limit of quantification of 5µg/L (coefficient of variation <10%), proportional bias of 0.92 and constant bias of 8.8 in comparison to an outside reference laboratory. CONCLUSIONS: Synthetic urine is an appropriate alternative matrix for standard and quality control material preparation for the measurement of iodine in urine.