Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Dev Dyn ; 249(11): 1387-1393, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32644242

RESUMEN

BACKGROUND: With the goal of labeling and manipulating the zebrafish hypothalamus, we sought to target a green fluorescent protein (gfp) transgene to the expression domains of nkx2.4b, a gene expressed during hypothalamic and thyroid development. We combined transcription activator-like effector nucleases (TALENs)-mediated mutagenesis with a targeting construct to enable insertion of a gfp transgene into the endogenous nkx2.4b genomic locus. RESULTS: Injection of TALENs targeted to the first exon of nkx2.4b created a predicted null allele, and homozygous mutant embryos displayed loss of thyroid markers. From embryos injected with both TALENs and a targeting construct carrying a gfp transgene, we recovered a line in which GFP was expressed specifically in the hypothalamus and thyroid. Fish homozygous for this allele lacked exon 1 of nkx2.4b and exhibited hypothyroid phenotypes. CONCLUSIONS: By combining TALENs injections with a targeting construct that contained a gfp transgene, we were able to recover an allele in which GFP is expressed in the nkx2.4b expression domains, with homozygous phenotypes suggesting the creation of a loss-of-function transgenic line. These results demonstrate the creation of a useful tool for studying hypothalamus and thyroid development.


Asunto(s)
Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas de Homeodominio/genética , Glándula Tiroides/embriología , Transgenes , Proteínas de Pez Cebra/genética , Pez Cebra , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Pez Cebra/embriología , Pez Cebra/genética
2.
Genes Dev ; 23(8): 997-1013, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19346403

RESUMEN

Vertebrate muscle arises sequentially from embryonic, fetal, and adult myoblasts. Although functionally distinct, it is unclear whether these myoblast classes develop from common or different progenitors. Pax3 and Pax7 are expressed by somitic myogenic progenitors and are critical myogenic determinants. To test the developmental origin of embryonic and fetal myogenic cells in the limb, we genetically labeled and ablated Pax3(+) and Pax7(+) cells. Pax3(+)Pax7(-) cells contribute to muscle and endothelium, establish and are required for embryonic myogenesis, and give rise to Pax7(+) cells. Subsequently, Pax7(+) cells give rise to and are required for fetal myogenesis. Thus, Pax3(+) and Pax7(+) cells contribute differentially to embryonic and fetal limb myogenesis. To investigate whether embryonic and fetal limb myogenic cells have different genetic requirements we conditionally inactivated or activated beta-catenin, an important regulator of myogenesis, in Pax3- or Pax7-derived cells. beta-Catenin is necessary within the somite for dermomyotome and myotome formation and delamination of limb myogenic progenitors. In the limb, beta-catenin is not required for embryonic myoblast specification or myofiber differentiation but is critical for determining fetal progenitor number and myofiber number and type. Together, these studies demonstrate that limb embryonic and fetal myogenic cells develop from distinct, but related progenitors and have different cell-autonomous requirements for beta-catenin.


Asunto(s)
Miembro Posterior , Desarrollo de Músculos/fisiología , Mioblastos/fisiología , beta Catenina/metabolismo , Animales , Embrión de Mamíferos , Células Endoteliales/citología , Feto , Miembro Posterior/embriología , Miembro Posterior/crecimiento & desarrollo , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Factor de Transcripción PAX3 , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/metabolismo , Transducción de Señal , Proteínas Wnt/fisiología , beta Catenina/genética
3.
Development ; 140(14): 2867-78, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23739135

RESUMEN

The histone methyltransferase complex PRC2 controls key steps in developmental transitions and cell fate choices; however, its roles in vertebrate eye development remain unknown. Here, we report that in Xenopus, PRC2 regulates the progression of retinal progenitors from proliferation to differentiation. We show that the PRC2 core components are enriched in retinal progenitors and downregulated in differentiated cells. Knockdown of the PRC2 core component Ezh2 leads to reduced retinal progenitor proliferation, in part due to upregulation of the Cdk inhibitor p15(Ink4b). In addition, although PRC2 knockdown does not alter eye patterning, retinal progenitor gene expression or expression of the neural competence factor Sox2, it does cause suppression of proneural bHLH gene expression, indicating that PRC2 is crucial for the initiation of neural differentiation in the retina. Consistent with this, knocking down or blocking PRC2 function constrains the generation of most retinal neural cell types and promotes a Müller glial cell fate decision. We also show that Wnt/ß-catenin signaling acting through the receptor Frizzled 5, but independent of Sox2, regulates expression of key PRC2 subunits in the developing retina. This is consistent with a role for this pathway in coordinating proliferation and the transition to neurogenesis in the Xenopus retina. Our data establish PRC2 as a regulator of proliferation and differentiation during eye development.


Asunto(s)
Complejo Represivo Polycomb 2/metabolismo , Retina/embriología , Vía de Señalización Wnt , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Diferenciación Celular , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2 , Receptores Frizzled/metabolismo , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Metilación , Complejo Represivo Polycomb 2/genética , Proteínas Represoras/metabolismo , Retina/citología , Retina/metabolismo , Proteínas de Xenopus/genética
4.
Dev Dyn ; 244(6): 785-96, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25694140

RESUMEN

BACKGROUND: The application of the Gal4/UAS system to enhancer and gene trapping screens in zebrafish has greatly increased the ability to label and manipulate cell populations in multiple tissues, including the central nervous system (CNS). However the ability to select existing lines for specific applications has been limited by the lack of detailed expression analysis. RESULTS: We describe a Gal4 enhancer trap screen in which we used advanced image analysis, including three-dimensional confocal reconstructions and documentation of expression patterns at multiple developmental time points. In all, we have created and annotated 98 lines exhibiting a wide range of expression patterns, most of which include CNS expression. Expression was also observed in nonneural tissues such as muscle, skin epithelium, vasculature, and neural crest derivatives. All lines and data are publicly available from the Zebrafish International Research Center (ZIRC) from the Zebrafish Model Organism Database (ZFIN). CONCLUSIONS: Our detailed documentation of expression patterns, combined with the public availability of images and fish lines, provides a valuable resource for researchers wishing to study CNS development and function in zebrafish. Our data also suggest that many existing enhancer trap lines may have previously uncharacterized expression in multiple tissues and cell types.


Asunto(s)
Animales Modificados Genéticamente/genética , Sistema Nervioso Central/metabolismo , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Imagenología Tridimensional/métodos , Proteínas del Tejido Nervioso/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/embriología , Sistema Nervioso Central/embriología , Elementos Transponibles de ADN , Bases de Datos Factuales , Genes Sintéticos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Mutagénesis Insercional , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/metabolismo , Especificidad de Órganos , Pez Cebra/embriología , Proteínas de Pez Cebra/biosíntesis , Proteína Fluorescente Roja
5.
Development ; 138(17): 3625-37, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21828091

RESUMEN

Muscle regeneration requires the coordinated interaction of multiple cell types. Satellite cells have been implicated as the primary stem cell responsible for regenerating muscle, yet the necessity of these cells for regeneration has not been tested. Connective tissue fibroblasts also are likely to play a role in regeneration, as connective tissue fibrosis is a hallmark of regenerating muscle. However, the lack of molecular markers for these fibroblasts has precluded an investigation of their role. Using Tcf4, a newly identified fibroblast marker, and Pax7, a satellite cell marker, we found that after injury satellite cells and fibroblasts rapidly proliferate in close proximity to one another. To test the role of satellite cells and fibroblasts in muscle regeneration in vivo, we created Pax7(CreERT2) and Tcf4(CreERT2) mice and crossed these to R26R(DTA) mice to genetically ablate satellite cells and fibroblasts. Ablation of satellite cells resulted in a complete loss of regenerated muscle, as well as misregulation of fibroblasts and a dramatic increase in connective tissue. Ablation of fibroblasts altered the dynamics of satellite cells, leading to premature satellite cell differentiation, depletion of the early pool of satellite cells, and smaller regenerated myofibers. Thus, we provide direct, genetic evidence that satellite cells are required for muscle regeneration and also identify resident fibroblasts as a novel and vital component of the niche regulating satellite cell expansion during regeneration. Furthermore, we demonstrate that reciprocal interactions between fibroblasts and satellite cells contribute significantly to efficient, effective muscle regeneration.


Asunto(s)
Tejido Conectivo/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Transgénicos , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Reacción en Cadena de la Polimerasa , Factor de Transcripción 4
6.
Development ; 138(2): 371-84, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21177349

RESUMEN

Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4(GFPCre) mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Tejido Conectivo/fisiología , Desarrollo de Músculos/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/deficiencia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Femenino , Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Desarrollo de Músculos/genética , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Embarazo , Transducción de Señal , Factor de Transcripción 4 , beta Catenina/metabolismo
7.
Mech Dev ; 131: 57-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24219979

RESUMEN

Fibroblast growth factor signaling plays a significant role in the developing eye, regulating both patterning and neurogenesis. Members of the Pea3/Etv4-subfamily of ETS-domain transcription factors (Etv1, Etv4, and Etv5) are transcriptional activators that are downstream targets of FGF/MAPK signaling, but whether they are required for eye development is unknown. We show that in the developing Xenopus laevis retina, etv1 is transiently expressed at the onset of retinal neurogenesis. We found that etv1 is not required for eye specification, but is required for the expression of atonal-related proneural bHLH transcription factors, and is also required for retinal neuron differentiation. Using transgenic reporters we show that the distal atoh7 enhancer, which is required for the initiation of atoh7 expression in the Xenopus retina, is responsive to both FGF signaling and etv1 expression. Thus, we conclude that Etv1 acts downstream of FGF signaling to regulate the initiation of neurogenesis in the Xenopus retina.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Neurogénesis/genética , Retina/metabolismo , Factores de Transcripción/biosíntesis , Xenopus laevis/genética , Animales , Diferenciación Celular/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Retina/crecimiento & desarrollo , Transducción de Señal/genética , Factores de Transcripción/genética , Xenopus laevis/crecimiento & desarrollo
8.
Cell Cycle ; 8(22): 3675-8, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19844163

RESUMEN

Development of multicellular organisms is temporally and spatially complex. The Cre/loxP and Flp/FRT systems for genetic manipulation in mammals now enable researchers to explicitly examine in vivo the temporal and spatial role of cells and genes during development via cell lineage and ablation studies and conditional gene inactivation and activation. Recently we have used these methods to genetically dissect the role of Pax3(+) and Pax7(+) progenitor populations and the function of beta-catenin, an important regulator of myogenesis, in vertebrate limb myogenesis. Our lineage and ablation studies of Pax3(+) and Pax7(+) progenitors revealed surprising insights into myogenesis not apparent from Pax3 and Pax7 expression and functional studies. In addition, conditional inactivation and activation of beta-catenin in different progenitor populations and their progeny demonstrated that beta-catenin plays several cell-autonomous roles in myogenesis. Our studies highlight the hierarchical (i.e., genes versus cells), temporal and spatial complexity of development and demonstrate that manipulations of both cells and genes will be required to obtain a full understanding of the development of multicellular organisms.


Asunto(s)
Linaje de la Célula/fisiología , Desarrollo de Músculos/genética , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/metabolismo , Células Madre/fisiología , Animales , ADN Nucleotidiltransferasas , Silenciador del Gen , Técnicas Genéticas , Integrasas , Ratones , Desarrollo de Músculos/fisiología , Factor de Transcripción PAX3 , Células Madre/metabolismo , beta Catenina/metabolismo
9.
Development ; 132(4): 829-39, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15677728

RESUMEN

In a wide range of vertebrate species, the bHLH transcription factor Ath5 is tightly associated with both the initiation of neurogenesis in the retina and the genesis of retinal ganglion cells. Here, we describe at least two modes of regulating the expression of Ath5 during retinal development. We have found that a proximal cis-regulatory region of the Xenopus Ath5 gene (Xath5) is highly conserved across vertebrate species and is sufficient to drive retinal-specific reporter gene expression in transgenic Xenopus embryos. Xath5 proximal transgene expression depended upon two highly conserved bHLH factor binding sites (E-boxes) as well as bHLH factor activity in vivo. However, we found that bHLH activity was not required for expression of a longer Xath5 transgene, suggesting that additional mechanisms contribute to Xath5 expression in vivo. Consistent with this, we showed that a more distal fragment that does not include the conserved proximal region is sufficient to promote transgene expression in the developing retina. In mouse, we found that a longer fragment of the cis-regulatory region of either the mouse or Xenopus Ath5 gene was necessary for transgene expression, and that expression of a mouse Math5 (Atoh7) transgene was not dependent upon autoregulation. Thus, despite extensive conservation in the proximal region, the importance of these elements may be species dependent.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Retina/embriología , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Unión al ADN/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos/genética , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Secuencias Hélice-Asa-Hélice/genética , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Retina/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/metabolismo
10.
Methods ; 28(4): 402-10, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12507458

RESUMEN

The African clawed frog Xenopus laevis has long been used to study the development and function of the vertebrate retina. An efficient technique for generating transgenic Xenopus embryos, the REMI procedure, has enabled the stable overexpression of transgenes in developing and mature X. laevis. In the retina, transgenes driven by retinal-specific promoters have been used to study protein trafficking, circadian rhythms, and retinal degeneration. The REMI technique is surprisingly simple, consisting of integration of plasmid DNA into permeabilized sperm nuclei, followed by transplantation of these nuclei into unfertilized eggs. Here, we describe the reagents and steps necessary for generation of transgenic embryos using the REMI reaction and discuss its applications for the study of retinal development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Retina/crecimiento & desarrollo , Retina/fisiología , Transgenes/fisiología , Xenopus laevis/genética , Animales , Animales Modificados Genéticamente , Núcleo Celular/fisiología , Femenino , Masculino , Modelos Animales , Óvulo/fisiología , Espermatozoides/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda