Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Chem Phys ; 145(19): 194504, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27875875

RESUMEN

The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water.

2.
J Phys Condens Matter ; 24(34): 345502, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22850460

RESUMEN

We study the energy band structure of magnetic graphene superlattices with delta-function magnetic barriers and zero average magnetic field. The dispersion relation obtained using the T-matrix approach shows the emergence of an infinite number of Dirac-like points at finite energies, while the original Dirac point is still located at the same place as that for pristine graphene. The carrier group velocity at the original Dirac point is isotropically renormalized, but at finite energy Dirac points it is generally anisotropic. An asymmetry in the width between the wells and the barriers of the periodic potential induces a shift of the original Dirac point in the zero-energy plane, keeping the velocity renormalization isotropic.


Asunto(s)
Grafito/química , Fenómenos Magnéticos , Anisotropía , Análisis Espectral
3.
J Phys Condens Matter ; 23(29): 295503, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21737866

RESUMEN

Using the nearest-neighbor tight-binding approach we study the electronic band structures of graphene nanoribbons with self-passivating edge reconstructions. For zigzag ribbons the edge reconstruction moves both the Fermi energy and the flat band down by several hundred meV, and the flat band is always found to be below the Fermi energy. The states featured by the flat band are shown to be mainly localized at the atoms belonging to several lattice lines closest to the edges. For armchair ribbons the edge reconstruction strongly modifies the band structure in the region close to the Fermi energy, leading to the appearance of a band gap even for ribbons which were predicted to be metallic in the model of standard armchair edges. The gap widths are, however, strongly different in magnitude and behave in different ways regarding the ribbon width.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda