Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
2.
J Korean Soc Radiol ; 85(4): 693-704, 2024 Jul.
Artículo en Ko | MEDLINE | ID: mdl-39130790

RESUMEN

Artificial intelligence (AI) technology is actively being applied for the interpretation of medical imaging, such as chest X-rays. AI-based software medical devices, which automatically detect various types of abnormal findings in chest X-ray images to assist physicians in their interpretation, are actively being commercialized and clinically implemented in Korea. Several important issues need to be considered for AI-based detection assistant tools to be applied in clinical practice: the evaluation of performance and efficacy prior to implementation; the determination of the target application, range, and method of delivering results; and monitoring after implementation and legal liability issues. Appropriate decision making regarding these devices based on the situation in each institution is necessary. Radiologists must be engaged as medical assessment experts using the software for these devices as well as in medical image interpretation to ensure the safe and efficient implementation and operation of AI-based detection assistant tools.

3.
Radiol Artif Intell ; 6(2): e230327, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38197795

RESUMEN

Tuberculosis, which primarily affects developing countries, remains a significant global health concern. Since the 2010s, the role of chest radiography has expanded in tuberculosis triage and screening beyond its traditional complementary role in the diagnosis of tuberculosis. Computer-aided diagnosis (CAD) systems for tuberculosis detection on chest radiographs have recently made substantial progress in diagnostic performance, thanks to deep learning technologies. The current performance of CAD systems for tuberculosis has approximated that of human experts, presenting a potential solution to the shortage of human readers to interpret chest radiographs in low- or middle-income, high-tuberculosis-burden countries. This article provides a critical appraisal of developmental process reporting in extant CAD software for tuberculosis, based on the Checklist for Artificial Intelligence in Medical Imaging. It also explores several considerations to scale up CAD solutions, encompassing manufacturer-independent CAD validation, economic and political aspects, and ethical concerns, as well as the potential for broadening radiography-based diagnosis to other nontuberculosis diseases. Collectively, CAD for tuberculosis will emerge as a representative deep learning application, catalyzing advances in global health and health equity. Keywords: Computer-aided Diagnosis (CAD), Conventional Radiography, Thorax, Lung, Machine Learning Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Inteligencia Artificial , Tuberculosis , Humanos , Salud Global , Programas Informáticos , Diagnóstico por Computador/métodos
4.
Open Forum Infect Dis ; 11(2): ofad682, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38328494

RESUMEN

Background: Clofazimine is suggested as a promising drug for the treatment of nontuberculous mycobacterial pulmonary disease. However, the role of clofazimine in severe Mycobacterium avium complex pulmonary disease (MAC-PD) remains unclear. In this study, we investigated the treatment outcomes of patients with severe MAC-PD treated with regimens containing clofazimine. Methods: This study included patients diagnosed with severe MAC-PD at Seoul National University Hospital who underwent anti-mycobacterial treatment between 1 January 2011 and 31 December 2022. We assessed the rate of culture conversion within 6 months and microbiological cure in patients receiving clofazimine-containing regimens, considering the dose and duration of clofazimine administration. Results: A total of 170 patients with severe MAC-PD, treated with regimens containing clofazimine, were included in the analysis. The median age of patients was 68 years (interquartile range, 59-75 years), with a female predominance (n = 114 [67.1%]). Cavities were identified in 121 patients (71.2%). Within 6 months, 77 patients (45.3%) achieved culture conversion, and 84 of 154 (54.6%) patients attained microbiological cure. The dose of clofazimine (100 mg vs 50 mg) was not associated with culture conversion (adjusted odds ratio [aOR], 0.64 [95% confidence interval {CI}, .29-1.42]) or microbiological cure (aOR, 1.21 [95% CI, .52-2.81]). The microbiological cure rate reached 71.0% when clofazimine was administered for 6-12 months, compared to 23.1% when administered for <6 months. Conclusions: Clofazimine demonstrated a relatively favorable efficacy in severe MAC-PD, regardless of the maintenance dose. This effect was more pronounced when administered for a duration exceeding 6 months.

5.
Radiol Cardiothorac Imaging ; 6(2): e230287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38483245

RESUMEN

Purpose To investigate quantitative CT (QCT) measurement variability in interstitial lung disease (ILD) on the basis of two same-day CT scans. Materials and Methods Participants with ILD were enrolled in this multicenter prospective study between March and October 2022. Participants underwent two same-day CT scans at an interval of a few minutes. Deep learning-based texture analysis software was used to segment ILD features. Fibrosis extent was defined as the sum of reticular opacity and honeycombing cysts. Measurement variability between scans was assessed with Bland-Altman analyses for absolute and relative differences with 95% limits of agreement (LOA). The contribution of fibrosis extent to variability was analyzed using a multivariable linear mixed-effects model while adjusting for lung volume. Eight readers assessed ILD fibrosis stability with and without QCT information for 30 randomly selected samples. Results Sixty-five participants were enrolled in this study (mean age, 68.7 years ± 10 [SD]; 47 [72%] men, 18 [28%] women). Between two same-day CT scans, the 95% LOA for the mean absolute and relative differences of quantitative fibrosis extent were -0.9% to 1.0% and -14.8% to 16.1%, respectively. However, these variabilities increased to 95% LOA of -11.3% to 3.9% and -123.1% to 18.4% between CT scans with different reconstruction parameters. Multivariable analysis showed that absolute differences were not associated with the baseline extent of fibrosis (P = .09), but the relative differences were negatively associated (ß = -0.252, P < .001). The QCT results increased readers' specificity in interpreting ILD fibrosis stability (91.7% vs 94.6%, P = .02). Conclusion The absolute QCT measurement variability of fibrosis extent in ILD was 1% in same-day CT scans. Keywords: CT, CT-Quantitative, Thorax, Lung, Lung Diseases, Interstitial, Pulmonary Fibrosis, Diagnosis, Computer Assisted, Diagnostic Imaging Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Fibrosis Pulmonar , Anciano , Femenino , Humanos , Masculino , Modelos Lineales , Enfermedades Pulmonares Intersticiales/diagnóstico , Estudios Prospectivos , Tomografía Computarizada por Rayos X , Persona de Mediana Edad
6.
Korean J Radiol ; 25(7): 613-622, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38942455

RESUMEN

OBJECTIVE: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). MATERIALS AND METHODS: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. RESULTS: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. CONCLUSION: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.


Asunto(s)
Inteligencia Artificial , Sociedades Médicas , Humanos , República de Corea , Encuestas y Cuestionarios , Radiología , Programas Informáticos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda