Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Cell ; 72(2): 250-262.e6, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30270107

RESUMEN

Double-strand breaks (DSBs) are extremely detrimental DNA lesions that can lead to cancer-driving mutations and translocations. Non-homologous end joining (NHEJ) and homologous recombination (HR) represent the two main repair pathways operating in the context of chromatin to ensure genome stability. Despite extensive efforts, our knowledge of DSB-induced chromatin still remains fragmented. Here, we describe the distribution of 20 chromatin features at multiple DSBs spread throughout the human genome using ChIP-seq. We provide the most comprehensive picture of the chromatin landscape set up at DSBs and identify NHEJ- and HR-specific chromatin events. This study revealed the existence of a DSB-induced monoubiquitination-to-acetylation switch on histone H2B lysine 120, likely mediated by the SAGA complex, as well as higher-order signaling at HR-repaired DSBs whereby histone H1 is evicted while ubiquitin and 53BP1 accumulate over the entire γH2AX domains.


Asunto(s)
Cromatina/genética , Reparación del ADN/genética , Histonas/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Humanos , Células K562 , Proteína 1 de Unión al Supresor Tumoral P53/genética
2.
Nephrol Dial Transplant ; 39(3): 496-509, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37697719

RESUMEN

BACKGROUND: The role of macrophages in the development of rhabdomyolysis-induced acute kidney injury (RM-AKI) has been established, but an in-depth understanding of the changes in the immune landscape could help to improve targeted strategies. Whereas senescence is usually associated with chronic kidney processes, we also wished to explore whether senescence could also occur in AKI and whether senolytics could act on immune cells. METHODS: Single-cell RNA sequencing was used in the murine glycerol-induced RM-AKI model to dissect the transcriptomic characteristics of CD45+ live cells sorted from kidneys 2 days after injury. Public datasets from murine AKI models were reanalysed to explore cellular senescence signature in tubular epithelial cells (TECs). A combination of senolytics (dasatinib and quercetin, DQ) was administered to mice exposed or not to RM-AKI. RESULTS: Unsupervised clustering of nearly 17 000 single-cell transcriptomes identified seven known immune cell clusters. Sub-clustering of the mononuclear phagocyte cells revealed nine distinct cell sub-populations differently modified with RM. One macrophage cluster was particularly interesting since it behaved as a critical node in a trajectory connecting one major histocompatibility complex class IIhigh (MHCIIhigh) cluster only present in Control to two MHCIIlow clusters only present in RM-AKI. This critical cluster expressed a senescence gene signature, that was very different from that of the TECs. Senolytic DQ treatment blocked the switch from a F4/80highCD11blow to F4/80lowCD11bhigh phenotype, which correlated with prolonged nephroprotection in RM-AKI. CONCLUSIONS: Single-cell RNA sequencing unmasked novel transitional macrophage subpopulation associated with RM-AKI characterized by the activation of cellular senescence processes. This work provides a proof-of-concept that senolytics nephroprotective effects may rely, at least in part, on subtle immune modulation.


Asunto(s)
Lesión Renal Aguda , Rabdomiólisis , Ratones , Animales , Senoterapéuticos , Lesión Renal Aguda/etiología , Lesión Renal Aguda/complicaciones , Riñón , Rabdomiólisis/complicaciones , Rabdomiólisis/tratamiento farmacológico , Análisis de Secuencia de ARN
3.
FASEB J ; 35(11): e21931, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34653285

RESUMEN

Energetic metabolism controls key steps of kidney development, homeostasis, and epithelial repair following acute kidney injury (AKI). Hepatocyte nuclear factor-1ß (HNF-1ß) is a master transcription factor that controls mitochondrial function in proximal tubule (PT) cells. Patients with HNF1B pathogenic variant display a wide range of kidney developmental abnormalities and progressive kidney fibrosis. Characterizing the metabolic changes in PT cells with HNF-1ß deficiency may help to identify new targetable molecular hubs involved in HNF1B-related kidney phenotypes and AKI. Here, we combined 1 H-NMR-based metabolomic analysis in a murine PT cell line with CrispR/Cas9-induced Hnf1b invalidation (Hnf1b-/- ), clustering analysis, targeted metabolic assays, and datamining of published RNA-seq and ChIP-seq dataset to identify the role of HNF-1ß in metabolism. Hnf1b-/- cells grown in normoxic conditions display intracellular ATP depletion, increased cytosolic lactate concentration, increased lipid droplet content, failure to use pyruvate for energetic purposes, increased levels of tricarboxylic acid (TCA) cycle intermediates and oxidized glutathione, and a reduction of TCA cycle byproducts, all features consistent with mitochondrial dysfunction and an irreversible switch toward glycolysis. Unsupervised clustering analysis showed that Hnf1b-/- cells mimic a hypoxic signature and that they cannot furthermore increase glycolysis-dependent energetic supply during hypoxic challenge. Metabolome analysis also showed alteration of phospholipid biosynthesis in Hnf1b-/- cells leading to the identification of Chka, the gene coding for choline kinase α, as a new putative target of HNF-1ß. HNF-1ß shapes the energetic metabolism of PT cells and HNF1B deficiency in patients could lead to a hypoxia-like metabolic state precluding further adaptation to ATP depletion following AKI.


Asunto(s)
Células Epiteliales/metabolismo , Eliminación de Gen , Glucólisis/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo , Homeostasis/genética , Túbulos Renales Proximales/citología , Transducción de Señal/genética , Lesión Renal Aguda/metabolismo , Animales , Sistemas CRISPR-Cas , Hipoxia de la Célula/genética , Línea Celular , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes/métodos , Factor Nuclear 1-beta del Hepatocito/genética , Humanos , Metaboloma , Ratones , Transcriptoma
4.
Neurochem Res ; 47(8): 2416-2430, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716295

RESUMEN

Myocardial infraction (MI) is the principal risk factor for the onset of heart failure (HF). Investigations regarding the physiopathology of MI progression to HF have revealed the concerted engagement of other tissues, such as the autonomic nervous system and the medulla oblongata (MO), giving rise to systemic effects, important in the regulation of heart function. Cardiac sympathetic afferent denervation following application of resiniferatoxin (RTX) attenuates cardiac remodelling and restores cardiac function following MI. While the physiological responses are well documented in numerous species, the underlying molecular responses during the initiation and progression from MI to HF remains unclear. We obtained multi-tissue time course proteomics with a murine model of HF induced by MI in conjunction with RTX application. We isolated tissue sections from the left ventricle (LV), MO, cervical spinal cord and cervical vagal nerves at four time points over a 12-week study. Bioinformatic analyses consistently revealed a high statistical enrichment for metabolic pathways in all tissues and treatments, implicating a central role of mitochondria in the tissue-cellular response to both MI and RTX. In fact, the additional functional pathways found to be enriched in these tissues, involving the cytoskeleton, vesicles and signal transduction, could be downstream of responses initiated by mitochondria due to changes in neuronal pulse frequency after a shock such as MI or the modification of such frequency communication from the heart to the brain after RTX application. Development of future experiments, based on our proteomic results, should enable the dissection of more precise mechanisms whereby metabolic changes in neuronal and cardiac tissues can effectively ameliorate the negative physiological effects of MI via RTX application.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Desnervación , Modelos Animales de Enfermedad , Redes y Vías Metabólicas , Ratones , Infarto del Miocardio/metabolismo , Proteómica , Transducción de Señal
5.
Cell Mol Life Sci ; 78(7): 3485-3501, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33313981

RESUMEN

The incidence of disorders associated with low inflammatory state, such as chronic kidney disease, increases in the elderly. The accumulation of senescent cells during aging and the senescence-associated secretory phenotype, which leads to inflammaging, is known to be deleterious and account for progressive organ dysfunction. To date, the cellular actors implicated in chronic inflammation in the kidney during aging are still not well characterized. Using the DECyt method, based on hierarchical clustering of flow cytometry data, we showed that aging was associated with significant changes in stromal cell diversity in the kidney. In particular, we identified two cell populations up-regulated with aging, the mesenchymal stromal cell subset (kMSC) expressing CD73 and the monocyte-derived Ly6C+ CCR2+ macrophage subset expressing pro-inflammatory cytokines. Aged CD73+ kMSCs depicted senescence associated features with low proliferation rate, increased DNA damage foci and Ccl2 expression. Using co-cultures experiments, we showed that aged CD73+ kMSC promoted monocyte activation and secretion of inflammatory cytokines albeit less efficiently than young CD73+ kMSCs. In the context of ageing, increased frequency of CD73+ kMSC subpopulations could provide additional niche factors to newly recruited monocytes favoring a positive regulatory loop in response to local inflammation. Interfering with such partnership during aging could be a valuable approach to regulate kidney inflammaging and to limit the risk of developing chronic kidney disease in the elderly.


Asunto(s)
Microambiente Celular/inmunología , Senescencia Celular/inmunología , Inflamación/inmunología , Riñón/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Receptores CCR2/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Riñón/metabolismo , Riñón/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Monocitos/patología
6.
Mol Syst Biol ; 13(3): 921, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28302863

RESUMEN

Gut microbiota dysbiosis has been implicated in a variety of systemic disorders, notably metabolic diseases including obesity and impaired liver function, but the underlying mechanisms are uncertain. To investigate this question, we transferred caecal microbiota from either obese or lean mice to antibiotic-free, conventional wild-type mice. We found that transferring obese-mouse gut microbiota to mice on normal chow (NC) acutely reduces markers of hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-inoculated mice, a phenotypic trait blunted in conventional NOD2 KO mice. Furthermore, transferring of obese-mouse microbiota changes both the gut microbiota and the microbiome of recipient mice. We also found that transferring obese gut microbiota to NC-fed mice then fed with a high-fat diet (HFD) acutely impacts hepatic metabolism and prevents HFD-increased hepatic gluconeogenesis compared to non-inoculated mice. Moreover, the recipient mice exhibit reduced hepatic PEPCK and G6Pase activity, fed glycaemia and adiposity. Conversely, transfer of lean-mouse microbiota does not affect markers of hepatic gluconeogenesis. Our findings provide a new perspective on gut microbiota dysbiosis, potentially useful to better understand the aetiology of metabolic diseases.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Hígado/metabolismo , Obesidad/microbiología , Animales , Disbiosis , Gluconeogénesis , Glucosa-6-Fosfatasa/genética , Ratones , Ratones Endogámicos C57BL , Obesidad/inducido químicamente , Obesidad/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética
7.
Anal Bioanal Chem ; 410(7): 1991-2000, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29380016

RESUMEN

One of the major difficulties that arises when selecting aptamers containing a G-quadruplex is the correct amplification of the ssDNA sequence. Can aptamers containing a G-quadruplex be selected from a degenerate library using non-equilibrium capillary electrophoresis (CE) of equilibrium mixtures (NECEEM) along with high-throughput Illumina sequencing? In this article, we present some mismatches of the G-quadruplex T29 aptamer specific to thrombin, which was PCR amplified and sequenced by Illumina sequencing. Then, we show the proportionality between the number of sequenced molecules of T29 added to the library and the number of sequences obtained in Illumina sequencing, and we find that T29 sequences from this aptamer can be detected in a random library of ssDNA after the sample is fractionated by NECEEM, amplified by PCR, and sequenced. Treatment of the data by the counting of double-stranded DNA T29 sequences containing a maximum of two mismatches reveals a good correlation with the enrichment factor (fE). This factor is the ratio of the number of aptamer sequences found in the collected complex sample divided by the total number of sequencing reads (aptamer and non-aptamer) plus the quantity of T29 molecules (spiked into a DNA library) injected into CE.


Asunto(s)
Aptámeros de Nucleótidos/química , Electroforesis Capilar/métodos , G-Cuádruplex , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnica SELEX de Producción de Aptámeros/métodos , Aptámeros de Nucleótidos/genética , Secuencia de Bases , Biblioteca de Genes , Trombina/análisis
8.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1091-101, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27033119

RESUMEN

Periodontitis and type 2 diabetes are connected pandemic diseases, and both are risk factors for cardiovascular complications. Nevertheless, the molecular factors relating these two chronic pathologies are poorly understood. We have shown that, in response to a long-term fat-enriched diet, mice present particular gut microbiota profiles related to three metabolic phenotypes: diabetic-resistant (DR), intermediate (Inter), and diabetic-sensitive (DS). Moreover, many studies suggest that a dysbiosis of periodontal microbiota could be associated with the incidence of metabolic and cardiac diseases. We investigated whether periodontitis together with the periodontal microbiota may also be associated with these different cardiometabolic phenotypes. We report that the severity of glucose intolerance is related to the severity of periodontitis and cardiac disorders. In detail, alveolar bone loss was more accentuated in DS than Inter, DR, and normal chow-fed mice. Molecular markers of periodontal inflammation, such as TNF-α and plasminogen activator inhibitor-1 mRNA levels, correlated positively with both alveolar bone loss and glycemic index. Furthermore, the periodontal microbiota of DR mice was dominated by the Streptococcaceae family of the phylum Firmicutes, whereas the periodontal microbiota of DS mice was characterized by increased Porphyromonadaceae and Prevotellaceae families. Moreover, in DS mice the periodontal microbiota was indicated by an abundance of the genera Prevotella and Tannerella, which are major periodontal pathogens. PICRUSt analysis of the periodontal microbiome highlighted that prenyltransferase pathways follow the cardiometabolic adaptation to a high-fat diet. Finally, DS mice displayed a worse cardiac phenotype, percentage of fractional shortening, heart rhythm, and left ventricle weight-to-tibia length ratio than Inter and DR mice. Together, our data show that periodontitis combined with particular periodontal microbiota and microbiome is associated with metabolic adaptation to a high-fat diet related to the severity of cardiometabolic alteration.


Asunto(s)
Adaptación Fisiológica , Enfermedades Cardiovasculares/metabolismo , Dieta Alta en Grasa , Intolerancia a la Glucosa , Microbiota , Periodontitis/microbiología , Función Ventricular , Animales , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/microbiología , Dimetilaliltranstransferasa/metabolismo , Disbiosis/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Periodontitis/complicaciones , Inhibidor 1 de Activador Plasminogénico/metabolismo , Prevotella/aislamiento & purificación , Streptococcaceae/aislamiento & purificación , Factor de Necrosis Tumoral alfa/metabolismo
9.
Stem Cells ; 33(4): 1277-91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25523907

RESUMEN

Obesity-associated inflammation contributes to the development of metabolic diseases. Although brite adipocytes have been shown to ameliorate metabolic parameters in rodents, their origin and differentiation remain to be characterized in humans. Native CD45-/CD34+/CD31- cells have been previously described as human adipocyte progenitors. Using two additional cell surface markers, MSCA1 (tissue nonspecific alkaline phosphatase) and CD271 (nerve growth factor receptor), we are able to partition the CD45-/CD34+/CD31- cell population into three subsets. We establish serum-free culture conditions without cell expansion to promote either white/brite adipogenesis using rosiglitazone, or bone morphogenetic protein 7 (BMP7), or specifically brite adipogenesis using 3-isobuthyl-1-methylxanthine. We demonstrate that adipogenesis leads to an increase of MSCA1 activity, expression of white/brite adipocyte-related genes, and mitochondriogenesis. Using pharmacological inhibition and gene silencing approaches, we show that MSCA1 activity is required for triglyceride accumulation and for the expression of white/brite-related genes in human cells. Moreover, native immunoselected MSCA1+ cells exhibit brite precursor characteristics and the highest adipogenic potential of the three progenitor subsets. Finally, we provided evidence that MSCA1+ white/brite precursors accumulate with obesity in subcutaneous adipose tissue (sAT), and that local BMP7 and inflammation regulate brite adipogenesis by modulating MSCA1 in human sAT. The accumulation of MSCA1+ white/brite precursors in sAT with obesity may reveal a blockade of their differentiation by immune cells, suggesting that local inflammation contributes to metabolic disorders through impairment of white/brite adipogenesis. Stem Cells 2015;33:1277-1291.


Asunto(s)
Adipocitos Blancos/inmunología , Adipocitos Blancos/metabolismo , Adipogénesis/fisiología , Antígenos de Superficie/biosíntesis , Inmunidad Celular/fisiología , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Persona de Mediana Edad
10.
J Am Soc Nephrol ; 26(6): 1363-77, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25270069

RESUMEN

Rhabdomyolysis can be life threatening if complicated by AKI. Macrophage infiltration has been observed in rat kidneys after glycerol-induced rhabdomyolysis, but the role of macrophages in rhabdomyolysis-induced AKI remains unknown. Here, in a patient diagnosed with rhabdomyolysis, we detected substantial macrophage infiltration in the kidney. In a mouse model of rhabdomyolysis-induced AKI, diverse renal macrophage phenotypes were observed depending on the stage of the disease. Two days after rhabdomyolysis, F4/80(low)CD11b(high)Ly6b(high)CD206(low) kidney macrophages were dominant, whereas by day 8, F4/80(high)CD11b(+)Ly6b(low)CD206(high) cells became the most abundant. Single-cell gene expression analyses of FACS-sorted macrophages revealed that these subpopulations were heterogeneous and that individual cells simultaneously expressed both M1 and M2 markers. Liposomal clodronate-mediated macrophage depletion significantly reduced the early infiltration of F4/80(low)CD11b(high)Ly6b(high)CD206(low) macrophages. Furthermore, transcriptionally regulated targets potentially involved in disease progression, including fibronectin, collagen III, and chemoattractants that were identified via single-cell analysis, were verified as macrophage-dependent in situ. In vitro, myoglobin treatment induced proximal tubular cells to secrete chemoattractants and macrophages to express proinflammatory markers. At day 30, liposomal clodronate-mediated macrophage depletion reduced fibrosis and improved both kidney repair and mouse survival. Seven months after rhabdomyolysis, histologic lesions were still present but were substantially reduced with prior depletion of macrophages. These results suggest an important role for macrophages in rhabdomyolysis-induced AKI progression and advocate the utility of long-term follow-up for patients with this disease.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/fisiopatología , Macrófagos/metabolismo , Mioglobina/metabolismo , Rabdomiólisis/complicaciones , Rabdomiólisis/fisiopatología , Animales , Células Cultivadas , Ácido Clodrónico/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Citometría de Flujo , Glicerol/farmacología , Humanos , Macrófagos/clasificación , Macrófagos/patología , Masculino , Ratones , Mioglobina/efectos de los fármacos , Distribución Aleatoria , Factores de Riesgo , Sensibilidad y Especificidad
11.
PLoS Genet ; 8(1): e1002460, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22275873

RESUMEN

Chromatin undergoes major remodeling around DNA double-strand breaks (DSB) to promote repair and DNA damage response (DDR) activation. We recently reported a high-resolution map of γH2AX around multiple breaks on the human genome, using a new cell-based DSB inducible system. In an attempt to further characterize the chromatin landscape induced around DSBs, we now report the profile of SMC3, a subunit of the cohesin complex, previously characterized as required for repair by homologous recombination. We found that recruitment of cohesin is moderate and restricted to the immediate vicinity of DSBs in human cells. In addition, we show that cohesin controls γH2AX distribution within domains. Indeed, as we reported previously for transcription, cohesin binding antagonizes γH2AX spreading. Remarkably, depletion of cohesin leads to an increase of γH2AX at cohesin-bound genes, associated with a decrease in their expression level after DSB induction. We propose that, in agreement with their function in chromosome architecture, cohesin could also help to isolate active genes from some chromatin remodelling and modifications such as the ones that occur when a DSB is detected on the genome.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Reparación del ADN/genética , Histonas/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Histonas/metabolismo , Recombinación Homóloga , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Sitio de Iniciación de la Transcripción , Cohesinas
12.
PLoS Genet ; 8(9): e1002959, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028366

RESUMEN

Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases.


Asunto(s)
Tejido Adiposo/metabolismo , Regulación de la Expresión Génica/genética , Lipogénesis/genética , Obesidad , Índice de Masa Corporal , Restricción Calórica , Ingestión de Energía/genética , Femenino , Humanos , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , Factores Sexuales , Pérdida de Peso
13.
EMBO J ; 29(8): 1446-57, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20360682

RESUMEN

Chromatin acts as a key regulator of DNA-related processes such as DNA damage repair. Although ChIP-chip is a powerful technique to provide high-resolution maps of protein-genome interactions, its use to study DNA double strand break (DSB) repair has been hindered by the limitations of the available damage induction methods. We have developed a human cell line that permits induction of multiple DSBs randomly distributed and unambiguously positioned within the genome. Using this system, we have generated the first genome-wide mapping of gammaH2AX around DSBs. We found that all DSBs trigger large gammaH2AX domains, which spread out from the DSB in a bidirectional, discontinuous and not necessarily symmetrical manner. The distribution of gammaH2AX within domains is influenced by gene transcription, as parallel mappings of RNA Polymerase II and strand-specific expression showed that gammaH2AX does not propagate on active genes. In addition, we showed that transcription is accurately maintained within gammaH2AX domains, indicating that mechanisms may exist to protect gene transcription from gammaH2AX spreading and from the chromatin rearrangements induced by DSBs.


Asunto(s)
Mapeo Cromosómico , Roturas del ADN de Doble Cadena , Histonas/genética , Línea Celular , Histonas/metabolismo , Humanos , Fosforilación , Mapeo Restrictivo , Transcripción Genética
14.
Nucleic Acids Res ; 40(7): e51, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22228834

RESUMEN

Genomic DNA (gDNA) contamination is an inherent problem during RNA purification that can lead to non-specific amplification and aberrant results in reverse transcription quantitative PCR (RT-qPCR). Currently, there is no alternative to RT(-) controls to evaluate the impact of the gDNA background on RT-PCR data. We propose a novel method (ValidPrime) that is more accurate than traditional RT(-) controls to test qPCR assays with respect to their sensitivity toward gDNA. ValidPrime measures the gDNA contribution using an optimized gDNA-specific ValidPrime assay (VPA) and gDNA reference sample(s). The VPA, targeting a non-transcribed locus, is used to measure the gDNA contents in RT(+) samples and the gDNA reference is used to normalize for GOI-specific differences in gDNA sensitivity. We demonstrate that the RNA-derived component of the signal can be accurately estimated and deduced from the total signal. ValidPrime corrects with high precision for both exogenous (spiked) and endogenous gDNA, contributing ∼60% of the total signal, whereas substantially reducing the number of required qPCR control reactions. In conclusion, ValidPrime offers a cost-efficient alternative to RT(-) controls and accurately corrects for signals derived from gDNA in RT-qPCR.


Asunto(s)
Contaminación de ADN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , ADN/análisis , Cartilla de ADN , Genómica , Ratones , Ratones Endogámicos C57BL
15.
FEBS Lett ; 598(10): 1170-1198, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38140813

RESUMEN

Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.


Asunto(s)
Gotas Lipídicas , Perilipinas , Humanos , Gotas Lipídicas/metabolismo , Animales , Perilipinas/metabolismo , Perilipinas/genética , Metabolismo de los Lípidos , Lipólisis , Perilipina-1/metabolismo , Perilipina-1/genética
16.
Biol Direct ; 18(1): 41, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501163

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy caused by mutations in the dystrophin gene. We characterized which isoforms of dystrophin were expressed by human induced pluripotent stem cell (hiPSC)-derived cardiac fibroblasts obtained from control and DMD patients. Distinct dystrophin isoforms were observed; however, highest molecular weight isoform was absent in DMD patients carrying exon deletions or mutations in the dystrophin gene. The loss of the full-length dystrophin isoform in hiPSC-derived cardiac fibroblasts from DMD patients resulted in deficient formation of actin microfilaments and a metabolic switch from mitochondrial oxidation to glycolysis. The DMD hiPSC-derived cardiac fibroblasts exhibited a dysregulated mitochondria network and reduced mitochondrial respiration, with enhanced compensatory glycolysis to sustain cellular ATP production. This metabolic remodeling was associated with an exacerbated myofibroblast phenotype and increased fibroblast activation in response to pro fibrotic challenges. As cardiac fibrosis is a critical pathological feature of the DMD heart, the myofibroblast phenotype induced by the absence of dystrophin may contribute to deterioration in cardiac function. Our study highlights the relationship between cytoskeletal dynamics, metabolism of the cell and myofibroblast differentiation and provides a new mechanism by which inactivation of dystrophin in non-cardiomyocyte cells may increase the severity of cardiopathy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Fenotipo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Fibroblastos/metabolismo , Fibrosis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
17.
Aging Cell ; 22(3): e13776, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617688

RESUMEN

Senescence is a key event in the impairment of adipose tissue (AT) function with obesity and aging but the underlying molecular and cellular players remain to be fully defined, particularly with respect to the human AT progenitors. We have found distinct profiles of senescent progenitors based on AT location between stroma from visceral versus subcutaneous AT. In addition to flow cytometry, we characterized the location differences with transcriptomic and proteomic approaches, uncovering the genes and developmental pathways that are underlying replicative senescence. We identified key components to include INBHA as well as SFRP4 and GREM1, antagonists for the WNT and BMP pathways, in the senescence-associated secretory phenotype and NOTCH3 in the senescence-associated intrinsic phenotype. Notch activation in AT progenitors inhibits adipogenesis and promotes myofibrogenesis independently of TGFß. In addition, we demonstrate that NOTCH3 is enriched in the premyofibroblast progenitor subset, which preferentially accumulates in the visceral AT of patients with an early obesity trajectory. Herein, we reveal that NOTCH3 plays a role in the balance of progenitor fate determination preferring myofibrogenesis at the expense of adipogenesis. Progenitor NOTCH3 may constitute a tool to monitor replicative senescence and to limit AT dysfunction in obesity and aging.


Asunto(s)
Senescencia Celular , Proteómica , Humanos , Senescencia Celular/genética , Tejido Adiposo/metabolismo , Envejecimiento/metabolismo , Obesidad/metabolismo
18.
Physiol Genomics ; 44(2): 141-51, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22108209

RESUMEN

Glucocorticoids are frequently prescribed drugs with important side-effects such as glucose intolerance and tissue remodeling. The goal was to explore the molecular basis of the response of skeletal muscle and adipose tissue during a short-term dexamethasone treatment to better understand the induction of side-effects of glucocorticoids on these metabolic tissues. Fifteen healthy male subjects were assigned to a 4-day treatment with dexamethasone at 4 mg/day. The primary outcome measures were changes in gene expression profiling of subcutaneous skeletal muscle and adipose tissue. Urinary cortisol, plasma, and metabolic biochemistry were also assessed. In both tissues the prominent observation was a response to stress and increased inflammatory responses. An upregulation of the serum amyloid A was detected in skeletal muscle, adipose tissue, and plasma, whereas circulating levels of C reactive protein, another acute phase protein, decreased along with a worsened insulin sensitivity index. As tissue-specific features, tissue remodeling was shown in skeletal muscle while the adipose tissue exhibited a decreased energy metabolism. Several limitations might be raised due to the small number of subjects investigated: a possible cross talk with the mineralocorticoid receptor, and a single time point may not identify regulations occurring during longitudinal treatment. In line with the known physiological effect of glucocorticoids the early modulation of stress response genes was observed. An unexpected feature was the upregulation of the inflammatory and immune pathways. The identification of novel impact on two glucocorticoid target tissues provides a molecular basis for the design of more specific glucocorticoids devoid of adverse effects.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Dexametasona/farmacología , Glucocorticoides/farmacología , Músculo Esquelético/efectos de los fármacos , Adulto , Proteína C-Reactiva/metabolismo , Dexametasona/administración & dosificación , Dexametasona/metabolismo , Glucocorticoides/administración & dosificación , Glucocorticoides/metabolismo , Humanos , Estudios Longitudinales , Masculino , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
19.
Sci Adv ; 8(12): eabg9055, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333579

RESUMEN

Dysregulations of lipid metabolism in the liver may trigger steatosis progression, leading to potentially severe clinical consequences such as nonalcoholic fatty liver diseases (NAFLDs). Molecular mechanisms underlying liver lipogenesis are very complex and fine-tuned by chromatin dynamics and multiple key transcription factors. Here, we demonstrate that the nuclear factor HMGB1 acts as a strong repressor of liver lipogenesis. Mice with liver-specific Hmgb1 deficiency display exacerbated liver steatosis, while Hmgb1-overexpressing mice exhibited a protection from fatty liver progression when subjected to nutritional stress. Global transcriptome and functional analysis revealed that the deletion of Hmgb1 gene enhances LXRα and PPARγ activity. HMGB1 repression is not mediated through nucleosome landscape reorganization but rather via a preferential DNA occupation in a region carrying genes regulated by LXRα and PPARγ. Together, these findings suggest that hepatocellular HMGB1 protects from liver steatosis development. HMGB1 may constitute a new attractive option to therapeutically target the LXRα-PPARγ axis during NAFLD.

20.
RNA ; 15(2): 249-54, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19144909

RESUMEN

Experiments with EMCV (Encephalomyocarditis virus) internal ribosome entry sites (IRESes) have shown that microRNAs (miRs) are unable to inhibit IRES driven translation. However, it is accepted that miRs can inhibit translation through multiple mechanisms, only some of which require interaction with the 5' cap structure. In this report, we first validate the targeting of miR-16 to a predicted binding site in the VEGF 3'UTR. We developed a series of experiments to ascertain whether or not miR-16 can inhibit translation of transcripts driven by either of the VEGF IRESes. Our results indicate that cellular IRESes can be classified as both sensitive and insensitive to miR control. While VEGF IRES-A activity was not altered by miR-16 targeting to the 3'UTR, IRES-B was susceptible to miR-16 inhibition. Taken together with previous results that show that IRES-B selectively translates the CUG initiated VEGF-121 isoform, we can conclude that the existence of two differentially susceptible IRESes in the VEGF 5'UTR leads to even more complex regulatory control of VEGF isoform production. This study demonstrates for the first time the inhibition of cellular IRES driven translation by a miR.


Asunto(s)
Regiones no Traducidas 3'/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Biosíntesis de Proteínas/genética , Ribosomas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Sitios de Unión , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda