Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sci Rep ; 12(1): 12554, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869110

RESUMEN

The dry sliding wear behaviour of a high carbon martensitic stainless steel (HCMSS) consisting of ~ 22.5 vol% of chromium (Cr)- and vanadium (V)-rich carbides processed by electron beam melting (EBM) has been captured. The microstructure consisted of martensite and retained austenite phases with a homogeneous distribution of sub-micron-sized V-rich and micron-sized Cr-rich carbides, leading to relatively high hardness. The CoF decreased ~ 14.1% with increasing load in the steady-state, due to the material transferred from the wear track over the counterbody. The wear rate of the HCMSS compared to martensitic tool steel processed in the same manner, and it was nearly identical under low applied load. The dominant wear mechanism was removal of the steel matrix through abrasion, followed by the oxidation of the wear track, while three-body abrasive wear occurred with increasing load. A plastically deformed zone beneath the wear track was revealed through cross-sectional hardness mapping. Specific phenomena occurred with increasingly aggressive wear conditions were described with carbide cracking, pull-out of V-rich carbides and matrix cracking. This study revealed the wear performance of the additively manufactured HCMSS, which could pave the way for producing components for wear-related applications ranging from shafts to plastic injection moulds via EBM.

2.
Materials (Basel) ; 13(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008035

RESUMEN

Ti6Al4V alloy was shot peened by using stainless-steel shots with different sizes (0.09-0.14 mm (S10) and 0.7-1.0 mm (S60)) for two durations (5 and 15 min) using a custom-designed peening system. The shot size was the main parameter modifying the roughness (0.74 µm for S10 vs. 2.27 µm for S60), whereas a higher peening time slightly increased roughness. Hardness improved up to approximately 35% by peening with large shots, while peening time was insignificant in hardness improvement. However, longer peening duration with large shots led to an unwanted formation of micro-cracks and delamination on the peened surfaces. After dry sliding wear tests, the mass loss of peened samples (S60 for 15 min) was 25% higher than that of un-peened samples, while the coefficient of friction decreased by 12%. Plastically deformed regions and micro-scratches were observed on the worn surfaces, which corresponds to mostly adhesive and abrasive wear mechanisms. The present study sheds light on how surface, subsurface and tribological properties of Ti6Al4V vary with shot peening and peening parameters, which paves the way for the understanding of the mechanical, surface, and tribological behavior of shot peened Ti6Al4V used in both aerospace and biomedical applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda