Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Heliyon ; 10(5): e27371, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486777

RESUMEN

Ibuprofen is classified as a non-steroidal anti-inflammatory drug (NSAID) that is employed as an initial treatment option for its non-steroidal anti-inflammatory, pain-relieving, and antipyretic properties. However, Ibuprofen is linked to specific well-known gastrointestinal adverse effects like ulceration and gastrointestinal bleeding. It has been linked to harmful effects on the liver, kidney, and heart. The purpose of the study is to create novel and potential IBU analogue with reduced side effects with the enhancement of their medicinal effects, so as to advance the overall safety profile of the drug. The addition of some novel functional groups including CH3, F, CF3, OCF3, Cl, and OH at various locations in its core structure suggestively boost the chemical as well as biological action. The properties of these newly designed structures were analyzed through chemical, physical, and spectral calculations using Density Functional Theory (DFT) and time-dependent DFT through B3LYP/6-31 g (d,p) basis set for geometry optimization. Molecular docking and non-bonding interaction studies were conducted by means of the human prostaglandin synthase protein (PDB ID: 5F19) to predict binding affinity, interaction patterns, and the stability of the protein-drug complex. Additionally, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) and PASS (Prediction of Activity Spectra for Substances) predictions were employed to evaluate the pharmacokinetic and toxicological properties of these structures. Importantly, most of the analogues displayed reduced hepatotoxicity, nephrotoxicity, and carcinogenicity in comparison to the original drug. Moreover, molecular docking analyses indicated improved medicinal outcomes, which were further supported by pharmacokinetic calculations. Together, these findings suggest that the modified structures have reduced adverse effects along with improved therapeutic action compared to the parent drug.

2.
J Hazard Mater ; 467: 133679, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325093

RESUMEN

Focusing on the relatively unexplored presence of micro- and nano-plastic aerosol particles, this study quantitatively assessed the emission of nano-plastic particles during the machining of carbon fiber reinforced plastic (CFRP) in the working environment. Measurements of aerosol particles smaller than 1 µm in size were performed by aerosol mass spectrometry. The findings revealed that concentrations of carbonous aerosol particles (organic aerosol and refractory black carbon (rBC)) were higher during working hours than during non-working hours. Positive matrix factorization identified CFRP particles as a significant source, contributing an average of approximately 30% of concentration of carbonous aerosol particles during working hours. This source apportionment was corroborated by the presence of bisphenol A and F fragments, principal components of the epoxy resins used in CFRP, and was corroborated by similarities to the carbon cluster ion distribution observed in rBC during CFRP pipe-cutting operations. Further, the particle size distribution suggested the existence of plastic aerosol particles smaller than 100 nm. This study established the method to quantitatively distinguish nano-plastic aerosol particles from other aerosol particles in high temporal resolution and these techniques are useful for accurately assessing exposure to nano-plastic aerosol particles in working environments.

3.
Front Immunol ; 15: 1374425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745644

RESUMEN

Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Factor 2 Relacionado con NF-E2 , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Masculino , Ratones , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Lactobacillus plantarum , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Ácidos Oléicos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda