Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neurobiol Dis ; 152: 105276, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33529768

RESUMEN

Organophosphate pesticides and nerve agents (OPs), are characterized by cholinesterase inhibition. In addition to severe peripheral symptoms, high doses of OPs can lead to seizures and status epilepticus (SE). Long lasting seizure activity and subsequent neurodegeneration promote neuroinflammation leading to profound pathological alterations of the brain. The aim of this study was to characterize neuroinflammatory responses at key time points after SE induced by the OP, diisopropylfluorophosphate (DFP). Immunohistochemistry (IHC) analysis and RT-qPCR on cerebral tissue are often insufficient to identity and quantify precise neuroinflammatory alterations. To address these needs, we performed RT-qPCR quantification after whole brain magnetic-activated cell-sorting (MACS) of CD11B (microglia/infiltrated macrophages) and GLAST (astrocytes)-positive cells at 1, 4, 24 h and 3 days post-SE. In order to compare these results to those obtained by IHC, we performed, classical Iba1 (microglia/infiltrated macrophages) and GFAP (astrocytes) IHC analysis in parallel, focusing on the hippocampus, a brain region affected by seizure activity and neurodegeneration. Shortly after SE (1-4 h), an increase in pro-inflammatory (M1-like) markers and A2-specific markers, proposed as neurotrophic, were observed in CD11B and GLAST-positive isolated cells, respectively. Microglial cells successively expressed immuno-regulatory (M2b-like) and anti-inflammatory (M2a-like) at 4 h and 24 h post-SE induction. At 24 h and 3 days, A1-specific markers, proposed as neurotoxic, were increased in isolated astrocytes. Although IHC analysis presented no modification in terms of percentage of marked area and cell number at 1 and 4 h after SE, at 24 h and 3 days after SE, microglial and astrocytic activation was visible by IHC as an increase in Iba1 and GFAP-positive area and Iba1-positive cells in DFP animals when compared to the control. Our work identified sequential microglial and astrocytic phenotype activation. Although the role of each phenotype in SE cerebral outcomes requires further study, targeting specific markers at specific time point could be a beneficial strategy for DFP-induced SE treatment.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Isoflurofato/toxicidad , Neuroglía/efectos de los fármacos , Síndromes de Neurotoxicidad/patología , Estado Epiléptico/inducido químicamente , Animales , Masculino , Ratones , Fenotipo
2.
Pharmacogenomics J ; 21(2): 165-173, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33024248

RESUMEN

Butyrylcholinesterase (BChE) deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivacurium) in patients who have mutations in the BCHE gene. Here, we report the characterization of four BCHE mutations associated with prolonged effect of suxamethonium (amino acid numbering based on the matured enzyme): p.20delValPheGlyGlyThrValThr, p.Leu88His, p.Ile140del and p.Arg386Cys. Expression of recombinant BCHE mutants, kinetic analysis and molecular dynamics were undertaken to understand how these mutations induce BChE deficiency. Three of the mutations studied (p.20delValPheGlyGlyThrValThr, p.Ile140del and p.Arg386Cys) lead to a "silent" BChE phenotype. Recombinant BCHE expression studies for these mutants revealed BChE activity levels comparable to untransfected cells. Only the last one (hBChE-L88H) presented BChE activity in the transfected cell culture medium. This BChE mutant (p.Leu88His) is associated with a lower kcat value compare to the wild-type enzyme. Molecular dynamics simulations analyses suggest that a destabilization of a structure implicated in enzyme activity (Ω-loop) can explain the modification of the kinetic parameter of the mutated protein.


Asunto(s)
Butirilcolinesterasa/genética , Mutación/genética , Succinilcolina/efectos adversos , Adulto , Anciano de 80 o más Años , Femenino , Humanos , Cinética , Persona de Mediana Edad , Mivacurio/efectos adversos , Fenotipo
3.
Epilepsia ; 61(6): e54-e59, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32359085

RESUMEN

Organophosphate (OP) compounds constitute a class of highly toxic molecules, characterized by irreversible cholinesterase (ChE) inhibition. Being either pesticides or chemical warfare agents, they present a major health issue in some countries, as well as a terrorist or military threat. Prompted by the need for suitable animal models to test novel medical countermeasures, we developed a new convulsive mouse model of OP poisoning using diisopropylfluorophosphate (DFP). Using electrocorticography (ECoG), we analyzed seizure and status epilepticus (SE) occurrences, as well as relative power of ECoG frequency band modifications after DFP injection in male Swiss mice. Next, we investigated DFP effect on ChE inhibition. Histological changes on neuronal activity and neuronal damage were examined by c-Fos immunolabeling and Fluoro-Jade C staining. We showed that mice exposed to DFP presented electrocorticographic seizures that rapidly progressed to SE within 20 minutes. Lasting >8 hours, DFP-induced SE was associated with major power spectrum modifications in seizing DFP animals compared to control animals. Seizures and SE development were concomitant with profound ChE inhibition and induced massive neuronal degeneration. Presenting all hallmarks of convulsive OP poisoning, we showed that our mouse model is valuable for studying pathophysiological mechanisms and preclinical testing of newly available therapeutic molecules.


Asunto(s)
Lesiones Encefálicas/inducido químicamente , Modelos Animales de Enfermedad , Isoflurofato/toxicidad , Organofosfatos/toxicidad , Convulsiones/inducido químicamente , Estado Epiléptico/inducido químicamente , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Lesiones Encefálicas/fisiopatología , Inhibidores de la Colinesterasa/toxicidad , Electrocorticografía/efectos de los fármacos , Electrocorticografía/métodos , Masculino , Ratones , Convulsiones/fisiopatología , Estado Epiléptico/fisiopatología
4.
Bioorg Med Chem Lett ; 30(24): 127609, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33039562

RESUMEN

Acetylcholinesterase inhibitors are the mainstay of Alzheimer's disease treatments, despite having only short-term symptomatic benefits and severe side effects. Selective butyrylcholinesterase inhibitors (BuChEIs) may be more effective treatments in late-stage Alzheimer's disease with fewer side effects. Virtual screening is a powerful tool for identifying potential inhibitors in large digital compound databases. This study used structure-based virtual screening combined with physicochemical filtering to screen the InterBioScreen and Maybridge databases for novel selective BuChEIs. The workflow rapidly identified 22 potential hits in silico, resulting in the discovery of a human BuChEI with low-micromolar potency in vitro (IC50 2.4 µM) and high selectivity for butyrylcholinesterase over acetylcholinesterase. The compound was a rapidly reversible BuChEI with mixed-model in vitro inhibition kinetics. The binding interactions were investigated using in silico molecular dynamics and by developing structure-activity relationships using nine analogues. The compound also displayed high permeability in an in vitro model of the blood-brain barrier.


Asunto(s)
Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Descubrimiento de Drogas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad
5.
Molecules ; 22(11)2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29077024

RESUMEN

Human butyrylcholinesterase is a performant stoichiometric bioscavenger of organophosphorous nerve agents. It is either isolated from outdated plasma or functionally expressed in eukaryotic systems. Here, we report the production of active human butyrylcholinesterase in a prokaryotic system after optimization of the primary sequence through the Protein Repair One Stop Shop process, a structure- and sequence-based algorithm for soluble bacterial expression of difficult eukaryotic proteins. The mutant enzyme was purified to homogeneity. Its kinetic parameters with substrate are similar to the endogenous human butyrylcholinesterase or recombinants produced in eukaryotic systems. The isolated protein was prone to crystallize and its 2.5-Å X-ray structure revealed an active site gorge region identical to that of previously solved structures. The advantages of this alternate expression system, particularly for the generation of butyrylcholinesterase variants with nerve agent hydrolysis activity, are discussed.


Asunto(s)
Butirilcolinesterasa/genética , Descubrimiento de Drogas , Agentes Nerviosos/farmacología , Proteínas Recombinantes/genética , Animales , Bacterias/genética , Sitios de Unión , Butirilcolinesterasa/metabolismo , Células CHO , Dominio Catalítico , Clonación Molecular , Cricetulus , Expresión Génica , Humanos , Conformación Molecular , Mutación , Agentes Nerviosos/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
6.
Toxicol Lett ; 361: 21-28, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35341927

RESUMEN

Sulfur mustard (SM) is a chemical blistering warfare agent affecting multiple organs. SM is an ongoing chemical threat in addition to the accidental risk associated with World War I buried shells. As no specific treatments are available, only symptomatic therapies can be used. To test new medical countermeasures in standard laboratories, analogs such as 2-chloroethyl ethylsulfide (CEES) are currently used, although only a few studies compare its clinical effects with SM. In the present paper, skin lesions induced by SM and CEES are compared in terms of their macroscopic aspects, histology, and molecular biology to evaluate the pertinence of CEES as a SM analog. For this purpose, an in vivo model of CEES vapor exposure, similar to that of SM, is described in this paper. RESULTS: showed similar skin lesions with CEES and SM but with slight differences in the apparition delay and intensity of the lesions. Indeed, SM induced earlier, deeper, and stronger lesions. However, the same healing status was observed at the end of the study period (14 days). In conclusion, CEES appears a relevant analog of SM, leading to similar skin lesions. The CEES vapor exposure model therefore seems suitable for testing new medical countermeasures.


Asunto(s)
Sustancias para la Guerra Química , Gas Mostaza , Sustancias para la Guerra Química/toxicidad , Biología Molecular , Gas Mostaza/análogos & derivados , Gas Mostaza/toxicidad , Piel
7.
Chem Biol Drug Des ; 97(5): 1048-1058, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33455074

RESUMEN

Cholinesterase inhibitors remain the mainstay of Alzheimer's disease treatment, and the search for new inhibitors with better efficacy and side effect profiles is ongoing. Virtual screening (VS) is a powerful technique for searching large compound databases for potential hits. This study used a sequential VS workflow combining ligand-based VS, molecular docking and physicochemical filtering to screen for central nervous system (CNS) drug-like acetylcholinesterase inhibitors (AChEIs) amongst the 6.9 million compounds of the CoCoCo database. Eleven in silico hits were initially selected, resulting in the discovery of an AChEI with a Ki of 3.2 µM. In vitro kinetics and in silico molecular dynamics experiments informed the selection of an additional seven analogues. This led to the discovery of two further AChEIs, with Ki values of 2.9 µM and 0.65 µM. All three compounds exhibited reversible, mixed inhibition of acetylcholinesterase. Importantly, the in silico physicochemical filter facilitated the discovery of CNS drug-like compounds, such that all three inhibitors displayed high in vitro blood-brain barrier model permeability.


Asunto(s)
Acetilcolinesterasa/química , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Sitios de Unión , Butirilcolinesterasa/metabolismo , Dominio Catalítico , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Bases de Datos de Compuestos Químicos , Donepezilo/química , Donepezilo/metabolismo , Donepezilo/uso terapéutico , Electrophorus/metabolismo , Caballos/metabolismo , Cinética , Simulación de Dinámica Molecular , Permeabilidad/efectos de los fármacos
9.
Sci Rep ; 10(1): 19228, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154418

RESUMEN

With millions of intoxications each year and over 200,000 deaths, organophosphorus (OP) compounds are an important public health issue worldwide. OP poisoning induces cholinergic syndrome, with respiratory distress, hypertension, and neuron damage that may lead to epileptic seizures and permanent cognitive deficits. Existing countermeasures are lifesaving but do not prevent long-lasting neuronal comorbidities, emphasizing the urgent need for animal models to better understand OP neurotoxicity and identify novel antidotes. Here, using diisopropylfluorophosphate (DFP), a prototypic and moderately toxic OP, combined with zebrafish larvae, we first showed that DFP poisoning caused major acetylcholinesterase inhibition, resulting in paralysis and CNS neuron hyperactivation, as indicated by increased neuronal calcium transients and overexpression of the immediate early genes fosab, junBa, npas4b, and atf3. In addition to these epileptiform seizure-like events, DFP-exposed larvae showed increased neuronal apoptosis, which were both partially alleviated by diazepam treatment, suggesting a causal link between neuronal hyperexcitation and cell death. Last, DFP poisoning induced an altered balance of glutamatergic/GABAergic synaptic activity with increased NR2B-NMDA receptor accumulation combined with decreased GAD65/67 and gephyrin protein accumulation. The zebrafish DFP model presented here thus provides important novel insights into the pathophysiology of OP intoxication, making it a promising model to identify novel antidotes.


Asunto(s)
Conducta Animal/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Isoflurofato/toxicidad , Larva/efectos de los fármacos , Neuronas/efectos de los fármacos , Intoxicación por Organofosfatos/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Intoxicación por Organofosfatos/complicaciones , Convulsiones/etiología , Convulsiones/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda