RESUMEN
Electronic spectra of solids subjected to a magnetic field are often discussed in terms of Landau levels and Hofstadter-butterfly-style Brown-Zak minibands manifested by magneto-oscillations in two-dimensional electron systems. Here, we present the semiclassical precursors of these quantum magneto-oscillations which appear in graphene superlattices at low magnetic field near the Lifshitz transitions and persist at elevated temperatures. These oscillations originate from Aharonov-Bohm interference of electron waves following open trajectories that belong to a kagome-shaped network of paths characteristic for Lifshitz transitions in the moire superlattice minibands of twistronic graphenes.
RESUMEN
We implement circuit quantum electrodynamics (cQED) with quantum dots in bilayer graphene, a maturing material platform that can host long-lived spin and valley states. Our device combines a high-impedance (Zr ≈ 1 kΩ) superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure. Electric dipole coupling between the subsystems allows the resonator to sense the electric susceptibility of the double quantum dot from which we reconstruct its charge stability diagram. We achieve sensitive and fast detection of the interdot transition with a signal-to-noise ratio of 3.5 within 1 µs integration time. The charge-photon interaction is quantified in the dispersive and resonant regimes by comparing the resonator response to input-output theory, yielding a coupling strength of g/2π = 49.7 MHz. Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.
RESUMEN
The spin degrees of freedom is crucial for the understanding of any condensed matter system. Knowledge of spin-mixing mechanisms is not only essential for successful control and manipulation of spin qubits, but also uncovers fundamental properties of investigated devices and material. For electrostatically defined bilayer graphene quantum dots, in which recent studies report spin-relaxation times T_{1} up to 50 ms with strong magnetic field dependence, we study spin-blockade phenomena at charge configuration (1,2)â(0,3). We examine the dependence of the spin-blockade leakage current on interdot tunnel coupling and on the magnitude and orientation of externally applied magnetic field. In out-of-plane magnetic field, the observed zero-field current peak could arise from finite-temperature cotunneling with the leads; though involvement of additional spin- and valley-mixing mechanisms are necessary for explaining the persistent sharp side peaks observed. In in-plane magnetic field, we observe a zero-field current dip, attributed to the competition between the spin Zeeman effect and the Kane-Mele spin-orbit interaction. Details of the line shape of this current dip, however, suggest additional underlying mechanisms are at play.
RESUMEN
We present an electron interferometer defined purely by electrostatic gating in an encapsulated bilayer graphene. This minimizes possible sample degradation introduced by conventional etching methods when preparing quantum devices. The device quality is demonstrated by observing Aharonov-Bohm (AB) oscillations with a period of h/e, h/2e, h/3e, and h/4e, witnessing a coherence length of many microns. The AB oscillations as well as the type of carriers (electrons or holes) are seamlessly tunable with gating. The coherence length longer than the ring perimeter and semiclassical trajectory of the carrier are established from the analysis of the temperature and magnetic field dependence of the oscillations. Our gate-defined ring geometry has the potential to evolve into a platform for exploring correlated quantum states such as superconductivity in interferometers in twisted bilayer graphene.
RESUMEN
Holes in germanium nanowires have emerged as a realistic platform for quantum computing based on spin qubit logic. On top of the large spin-orbit coupling that allows fast qubit operation, nanowire geometry and orientation can be tuned to cancel out charge noise and hyperfine interaction. Here, we demonstrate a scalable approach to synthesize and organize Ge nanowires on silicon (100)-oriented substrates. Germanium nanowire networks are obtained by selectively growing on nanopatterned slits in a metalorganic vapor phase epitaxy system. Low-temperature electronic transport measurements are performed on nanowire Hall bar devices revealing high hole doping of â¼1018 cm-3 and mean free path of â¼10 nm. Quantum diffusive transport phenomena, universal conductance fluctuations, and weak antilocalization are revealed through magneto transport measurements yielding a coherence and a spin-orbit length of the order of 100 and 10 nm, respectively.
RESUMEN
The equilibration between quantum Hall edge modes is known to depend on the disorder potential and the steepness of the edge. Modern samples with higher mobilities and setups with lower electron temperatures call for a further exploration of the topic. We develop a framework to systematically measure and analyze the equilibration of many (up to 8) integer edge modes. Our results show that spin-selective coupling dominates even for non-neighboring channels with parallel spin. Changes in magnetic field and bulk density let us control the equilibration until it is almost completely suppressed and dominated only by individual microscopic scatterers. This method could serve as a guideline to investigate and design improved devices, and to study fractional and other exotic states.
RESUMEN
A unique feature of the complex band structures of moiré materials is the presence of minivalleys, their hybridization, and scattering between them. Here, we investigate magnetotransport oscillations caused by scattering between minivalleys-a phenomenon analogous to magnetointersubband oscillations-in a twisted double bilayer graphene sample with a twist angle of 1.94°. We study and discuss the potential scattering mechanisms and find an electron-phonon mechanism and valley conserving scattering to be likely. Finally, we discuss the relevance of our findings for different materials and twist angles.
RESUMEN
Pauli blockade mechanisms-whereby carrier transport through quantum dots (QD) is blocked due to selection rules even when energetically allowed-are a direct manifestation of the Pauli exclusion principle, as well as a key mechanism for manipulating and reading out spin qubits. The Pauli spin blockade is well established for systems such as GaAs QDs, but is to be further explored for systems with additional degrees of freedom, such as the valley quantum numbers in carbon-based materials or silicon. Here we report experiments on coupled bilayer graphene double quantum dots, in which the spin and valley states are precisely controlled, enabling the observation of the two-electron combined blockade physics. We demonstrate that the doubly occupied single dot switches between two different ground states with gate and magnetic-field tuning, allowing for the switching of selection rules: with a spin-triplet-valley-singlet ground state, valley blockade is observed; and with the spin-singlet-valley-triplet ground state, robust spin blockade is shown.
RESUMEN
Quantum states in graphene are 2-fold degenerate in spins, and 2-fold in valleys. Both degrees of freedom can be utilized for qubit preparations. In our bilayer graphene quantum dots, we demonstrate that the valley g-factor gv, defined analogously to the spin g-factor gs for valley splitting in a perpendicular magnetic field, is tunable by over a factor of 4 from 20 to 90, by gate voltage adjustments only. Larger gv results from larger electronic dot sizes, determined from the charging energy. On our versatile device, bipolar operation, charging our quantum dot with charge carriers of the same or the opposite polarity as the leads, can be performed. Dots of both polarities are tunable to the first charge carrier, such that the transition from an electron to a hole dot by the action of the plunger gate can be observed. Addition of gates easily extends the system to host tunable double dots.
RESUMEN
Graphene has evolved as a platform for quantum transport that can compete with the best and cleanest semiconductor systems. Here, we report on the observation of distinct electronic jets emanating from a narrow split-gate-defined channel in bilayer graphene. We find that these jets, which are visible via their interference patterns, occur predominantly with an angle of 60° between each other. This observation is related to the trigonal warping in the band structure of bilayer graphene, which, in conjunction with electron injection through a constriction, leads to a valley-dependent selection of momenta. This experimental observation of electron jetting has consequences for carrier transport in two-dimensional materials with a trigonally warped band structure in general, as well as for devices relying on ballistic and valley-selective transport.
RESUMEN
Control over minivalley polarization and interlayer coupling is demonstrated in double bilayer graphene twisted with an angle of 2.37°. This intermediate angle is small enough for the minibands to form and large enough such that the charge carrier gases in the layers can be tuned independently. Using a dual-gated geometry we identify and control all possible combinations of minivalley polarization via the population of the two bilayers. An applied displacement field opens a band gap in either of the two bilayers, allowing us to even obtain full minivalley polarization. In addition, the carriers, formerly separated by their minivalley character, are mixed by tuning through a Lifshitz transition, where the Fermi surface topology changes. The high degree of control over the minivalley character of the bulk charge transport in twisted double bilayer graphene offers new opportunities for realizing valleytronics devices such as valley valves, filters, and logic gates.
RESUMEN
In multivalley semiconductors, the valley degree of freedom can be potentially used to store, manipulate, and read quantum information, but its control remains challenging. The valleys in bilayer graphene can be addressed by a perpendicular magnetic field which couples by the valley g factor g_{v}. However, control over g_{v} has not been demonstrated yet. We experimentally determine the energy spectrum of a quantum point contact realized by a suitable gate geometry in bilayer graphene. Using finite bias spectroscopy, we measure the energy scales arising from the lateral confinement as well as the Zeeman splitting and find a spin g factor g_{s}â¼2. g_{v} can be tuned by a factor of 3 using vertical electric fields, g_{v}â¼40-120. The results are quantitatively explained by a calculation considering topological magnetic moment and its dependence on confinement and the vertical displacement field.
RESUMEN
We report on charge detection in electrostatically defined quantum dot devices in bilayer graphene using an integrated charge detector. The device is fabricated without any etching and features a graphite back gate, leading to high-quality quantum dots. The charge detector is based on a second quantum dot separated from the first dot by depletion underneath a 150 nm wide gate. We show that Coulomb resonances in the sensing dot are sensitive to individual charging events on the nearby quantum dot. The potential change due to single electron charging causes a steplike change (up to 77%) in the current through the charge detector. Furthermore, the charging states of a quantum dot with tunable tunneling barriers and of coupled quantum dots can be detected.
RESUMEN
Crystal fields occur due to a potential difference between chemically different atomic species. In van der Waals heterostructures such fields are naturally present perpendicular to the planes. It has been realized recently that twisted graphene multilayers provide powerful playgrounds to engineer electronic properties by the number of layers, the twist angle, applied electric biases, electronic interactions, and elastic relaxations, but crystal fields have not received the attention they deserve. Here, we show that the band structure of large-angle twisted double bilayer graphene is strongly modified by crystal fields. In particular, we experimentally demonstrate that twisted double bilayer graphene, encapsulated between hBN layers, exhibits an intrinsic band gap. By the application of an external field, the gaps in the individual bilayers can be closed, allowing to determine the crystal fields. We find that crystal fields point from the outer to the inner layers with strengths in the bottom/top bilayer [Formula: see text] = 0.13 V/nm ≈ [Formula: see text] = 0.12 V/nm. We show both by means of first-principles calculations and low energy models that crystal fields open a band gap in the ground state. Our results put forward a physical scenario in which a crystal field effect in carbon substantially impacts the low energy properties of twisted double bilayer graphene, suggesting that such contributions must be taken into account in other regimes to faithfully predict the electronic properties of twisted graphene multilayers.
RESUMEN
In Bernal stacked bilayer graphene interlayer coupling significantly affects the electronic band structure compared to monolayer graphene. Here we present magnetotransport experiments on high-quality n-doped bilayer MoS_{2}. By measuring the evolution of the Landau levels as a function of electron density and applied magnetic field we are able to investigate the occupation of conduction band states, the interlayer coupling in pristine bilayer MoS_{2}, and how these effects are governed by electron-electron interactions. We find that the two layers of the bilayer MoS_{2} behave as two independent electronic systems where a twofold Landau level's degeneracy is observed for each MoS_{2} layer. At the onset of the population of the bottom MoS_{2} layer we observe a large negative compressibility caused by the exchange interaction. These observations, enabled by the high electronic quality of our samples, demonstrate weak interlayer tunnel coupling but strong interlayer electrostatic coupling in pristine bilayer MoS_{2}. The conclusions from the experiments may be relevant also to other transition metal dichalcogenide materials.
RESUMEN
Electrostatic confinement of charge carriers in bilayer graphene provides a unique platform for carbon-based spin, charge, or exchange qubits. By exploiting the possibility to induce a band gap with electrostatic gating, we form a versatile and widely tunable multiquantum dot system. We demonstrate the formation of single, double and triple quantum dots that are free of any sign of disorder. In bilayer graphene, we have the possibility to form tunnel barriers using different mechanisms. We can exploit the ambipolar nature of bilayer graphene where pn-junctions form natural tunnel barriers. Alternatively, we can use gates to form tunnel barriers, where we can vary the tunnel coupling by more than 2 orders of magnitude tuning between a deeply Coulomb blockaded system and a Fabry-Pérot-like cavity. Demonstrating such tunability is an important step toward graphene-based quantum computation.
RESUMEN
We explore a network of electronic quantum valley Hall states in the moiré crystal of minimally twisted bilayer graphene. In our transport measurements, we observe Fabry-Pérot and Aharanov-Bohm oscillations that are robust in magnetic fields ranging from 0 to 8 T, which is in strong contrast to more conventional two-dimensional systems where trajectories in the bulk are bent by the Lorentz force. This persistence in magnetic field and the linear spacing in density indicate that charge carriers in the bulk flow in topologically protected, one-dimensional channels. With this work, we demonstrate coherent electronic transport in a lattice of topologically protected states.
RESUMEN
We report the fabrication of electrostatically defined nanostructures in encapsulated bilayer graphene, with leakage resistances below depletion gates as high as R â¼ 10 GΩ. This exceeds previously reported values of R = 10-100 kΩ.1-3 We attribute this improvement to the use of a graphite back gate. We realize two split gate devices which define an electronic channel on the scale of the Fermi-wavelength. A channel gate covering the gap between the split gates varies the charge carrier density in the channel. We observe device-dependent conductance quantization of ΔG = 2e2/h and ΔG = 4e2/h. In quantizing magnetic fields normal to the sample plane, we recover the four-fold Landau level degeneracy of bilayer graphene. Unexpected mode crossings appear at the crossover between zero magnetic field and the quantum Hall regime.
RESUMEN
Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
RESUMEN
The strong spin-orbit coupling and the broken inversion symmetry in monolayer transition metal dichalcogenides results in spin-valley coupled band structures. Such a band structure leads to novel applications in the fields of electronics and optoelectronics. Density functional theory calculations as well as optical experiments have focused on spin-valley coupling in the valence band. Here we present magnetotransport experiments on high-quality n-type monolayer molybdenum disulphide (MoS_{2}) samples, displaying highly resolved Shubnikov-de Haas oscillations at magnetic fields as low as 2 T. We find the effective mass 0.7m_{e}, about twice as large as theoretically predicted and almost independent of magnetic field and carrier density. We further detect the occupation of the second spin-orbit split band at an energy of about 15 meV, i.e., about a factor of 5 larger than predicted. In addition, we demonstrate an intricate Landau level spectrum arising from a complex interplay between a density-dependent Zeeman splitting and spin- and valley-split Landau levels. These observations, enabled by the high electronic quality of our samples, testify to the importance of interaction effects in the conduction band of monolayer MoS_{2}.