Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 577(7789): 260-265, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31853061

RESUMEN

Chronic inflammation is accompanied by recurring cycles of tissue destruction and repair and is associated with an increased risk of cancer1-3. However, how such cycles affect the clonal composition of tissues, particularly in terms of cancer development, remains unknown. Here we show that in patients with ulcerative colitis, the inflamed intestine undergoes widespread remodelling by pervasive clones, many of which are positively selected by acquiring mutations that commonly involve the NFKBIZ, TRAF3IP2, ZC3H12A, PIGR and HNRNPF genes and are implicated in the downregulation of IL-17 and other pro-inflammatory signals. Mutational profiles vary substantially between colitis-associated cancer and non-dysplastic tissues in ulcerative colitis, which indicates that there are distinct mechanisms of positive selection in both tissues. In particular, mutations in NFKBIZ are highly prevalent in the epithelium of patients with ulcerative colitis but rarely found in both sporadic and colitis-associated cancer, indicating that NFKBIZ-mutant cells are selected against during colorectal carcinogenesis. In further support of this negative selection, we found that tumour formation was significantly attenuated in Nfkbiz-mutant mice and cell competition was compromised by disruption of NFKBIZ in human colorectal cancer cells. Our results highlight common and discrete mechanisms of clonal selection in inflammatory tissues, which reveal unexpected cancer vulnerabilities that could potentially be exploited for therapeutics in colorectal cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Colitis Ulcerosa/genética , Tasa de Mutación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Neoplasias Colorrectales/genética , Humanos , Ratones , Transducción de Señal
2.
BMC Immunol ; 25(1): 48, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054418

RESUMEN

BACKGROUND: TLR7 is a key player in the antiviral immunity. TLR7 signaling activates antigen-presenting cells including DCs and macrophages. This activation results in the adaptive immunity including T cells and B cells. Therefore, TLR7 is an important molecule of the immune system. Based on these observations, TLR7 agonists considered to become a therapy weaponize the immune system against cancer. Radiation therapy (RT) is one of the standard cancer therapies and is reported to modulate the tumor immune response. In this study, we aimed to investigate the anti-tumor activity in combination of TLR7 agonist, DSP-0509, with RT and underlying mechanism. RESULT: We showed that anti-tumor activity is enhanced by combining RT with the TLR7 agonist DSP-0509 in the CT26, LM8, and 4T1 inoculated mice models. We found that once- weekly (q1w) dosing of DSP-0509 rather than biweekly (q2w) dosing is needed to achieve superior anti-tumor activities in CT26 model. Spleen cells from the mice in RT/DSP-0509 combination treatment group showed increased tumor lytic activity, inversely correlated with tumor volume, as measured by the chromium-release cytotoxicity assay. We also found the level of cytotoxic T lymphocytes (CTLs) increased in the spleens of completely cured mice. When the mice completely cured by combination therapy were re-challenged with CT26 cells, all mice rejected CT26 cells but accepted Renca cells. This rejection was not observed with CD8 depletion. Furthermore, levels of splenic effector memory CD8 T cells were increased in the combination therapy group. To explore the factors responsible for complete cure by combination therapy, we analyzed peripheral blood leukocytes (PBLs) mRNA from completely cured mice. We found that Havcr2low, Cd274low, Cd80high, and Il6low were a predictive signature for the complete response to combination therapy. An analysis of tumor-derived mRNA showed that combination of RT and DSP-0509 strongly increased the expression of anti-tumor effector molecules including Gzmb and Il12. CONCLUSION: These data suggest that TLR7 agonist, DSP-0509, can be a promising concomitant when used in combination with RT by upregulating CTLs activity and gene expression of effector molecules. This combination can be an expecting new radio-immunotherapeutic strategy in clinical trials.


Asunto(s)
Receptor Toll-Like 7 , Animales , Receptor Toll-Like 7/agonistas , Ratones , Línea Celular Tumoral , Femenino , Activación de Linfocitos/efectos de los fármacos , Ratones Endogámicos BALB C , Glicoproteínas de Membrana/agonistas , Terapia Combinada , Humanos , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Modelos Animales de Enfermedad , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos
3.
Cancer Sci ; 114(4): 1324-1336, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36441110

RESUMEN

Bile duct cancer (BDC) frequently invades the nerve fibers, making complete surgical resection difficult. A single tumor mass contains cells of variable malignancy and cell-differentiation states, with cancer stem cells (CSCs) considered responsible for poor clinical outcomes. This study aimed to investigate the contribution of autosynthesized dopamine to CSC-related properties in BDC. Sphere formation assays using 13 commercially available BDC cell lines demonstrated that blocking dopamine receptor D1 (DRD1) signaling promoted CSC-related anchorage-independent growth. Additionally, we newly established four new BDC patient-derived organoids (PDOs) and found that blocking DRD1 increased resistance to chemotherapy and enabled xenotransplantation in vivo. Single-cell analysis revealed that the BDC PDO cells varied in their cell-differentiation states and responses to dopamine signaling. Further, DRD1 inhibition increased WNT7B expression in cells with bile duct-like phenotype, and it induced proliferation of other cell types expressing Wnt receptors and stem cell-like signatures. Reagents that inhibited Wnt function canceled the effect of DRD1 inhibition and reduced cell proliferation in BDC PDOs. In summary, in BDCs, DRD1 is a crucial protein involved in autonomous CSC proliferation through the regulation of endogenous WNT7B. As such, inhibition of the DRD1 feedback signaling may be a potential treatment strategy for BDC.


Asunto(s)
Neoplasias de los Conductos Biliares , Vía de Señalización Wnt , Humanos , Neoplasias de los Conductos Biliares/patología , Dopamina , Fenotipo , Receptores Dopaminérgicos/genética
4.
ACS Nano ; 18(34): 23757-23772, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39141816

RESUMEN

Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) crucial for the detection of infections and activation of downstream signaling pathways that lead to the production of pro-inflammatory cytokines and interferons. The TLR pathway is an attractive actively studied target pathway. Because of their strong immunostimulatory activity, TLRs are thought to be a "double-edged sword" for systemic treatment, even in the cancer field. To solve this, we have developed dextran-based TAM targeting activating conjugate (D-TAC) technology, which successfully uses tumor-associated macrophages (TAMs) to deliver the TLR7 agonist DSP-0509. We used low molecular weight dextran to target CD206 high M2-type macrophages, activate them, and induce a change in phenotype to antitumor M1-type macrophages with rapid clearance from the body and astonishing antitumor activity. We also demonstrated that the antitumor effect of our best drug candidate 5DEX-0509R is dependent on the abundance of TAMs, which is consistent with their mechanism of action. We believe that 5DEX-0509R generated by D-TAC technology can be a clinically applicable immunotherapy targeting the TLR signaling pathway.


Asunto(s)
Antineoplásicos , Nanomedicina , Receptor Toll-Like 7 , Macrófagos Asociados a Tumores , Animales , Ratones , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Dextranos/química , Dextranos/farmacología , Ratones Endogámicos C57BL , Humanos , Línea Celular Tumoral , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología
5.
Am J Respir Crit Care Med ; 186(2): 170-80, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22592804

RESUMEN

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary disorder of unknown etiology with few treatment options. Although tetraspanins are involved in various diseases, their roles in fibrosis have not been determined. OBJECTIVES: To investigate the role of tetraspanin CD151 in pulmonary fibrosis. METHODS: CD151 knockout (KO) mice were studied by histological, biochemical, and physiological analyses and compared with wild-type mice and CD9 KO mice. Further mechanistic analyses were performed in vitro, in vivo, and on samples from patients with IPF. MEASUREMENTS AND MAIN RESULTS: A microarray study identified an enrichment of genes involved in connective tissue disorders in the lungs of CD151 KO mice, but not in CD9 KO mice. Consistent with this, CD151 KO mice spontaneously exhibited age-related pulmonary fibrosis. Deletion of CD151 did not affect pulmonary fibroblast functions but instead degraded epithelial integrity via attenuated adhesion strength on the basement membrane; CD151-deleted alveolar epithelial cells exhibited increased α-SMA expression with activation of p-Smad2, leading to fibrotic changes in the lungs. This loss of epithelial integrity in CD151 KO lungs was further exacerbated by intratracheal bleomycin exposure, resulting in severe fibrosis with increased mortality. We also observed decreased numbers of CD151-positive alveolar epithelial cells in patients with IPF. CONCLUSIONS: CD151 is essential for normal function of alveolar epithelial cells; loss of CD151 causes pulmonary fibrosis as a result of epithelial disintegrity. Given that CD151 may protect against fibrosis, this protein represents a novel target for the treatment of fibrotic diseases.


Asunto(s)
Fibrosis Pulmonar/fisiopatología , Tetraspanina 24/fisiología , Animales , Bleomicina/farmacología , Modelos Animales de Enfermedad , Fibroblastos/fisiología , Humanos , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Proteína Smad2/metabolismo
6.
Sci Rep ; 4: 4568, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24691523

RESUMEN

Expression of a mesenchymal phenotype is often associated with invasive/metastatic behaviors of carcinoma cells. Acquisition of a mesenchymal phenotype by a carcinoma cell is known as epithelial-mesenchymal transition (EMT). The membrane-anchored matrix metalloproteinase-regulator RECK is abundant in normal mesenchymal cells. In aggressive carcinomas, however, RECK expression is often downregulated. This apparent paradox prompted us to clarify the relationship between EMT and RECK. We found that TGFß-induced E-cadherin downregulation, a hallmark of EMT, is accompanied by RECK-upregulation in a non-tumorigenic epithelial cell line (MCF10A). In contrast, the loss of E-cadherin expression is uncoupled from RECK-upregulation in carcinoma-derived cell lines (MCF7, MDA-MB-231, and A549). When RECK was artificially expressed in A549 cells, it showed little effect on EMT but elevated the level of integrin α5 and attenuated cell proliferation and migration. These findings implicate RECK in the regulation of proliferation and migration of normal epithelial cells after EMT and suggest how the uncoupling between EMT and RECK-upregulation impacts on the fates and behaviors of carcinoma cells.


Asunto(s)
Cadherinas/genética , Carcinoma/genética , Regulación hacia Abajo/genética , Proteínas Ligadas a GPI/genética , Regulación hacia Arriba/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Integrina alfa5/genética , Células MCF-7 , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda