Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 584(7819): 55-58, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760043

RESUMEN

Lightning flashes have been observed by a number of missions that visited or flew by Jupiter over the past several decades. Imagery led to a flash rate estimate of about 4 × 10-3 flashes per square kilometre per year (refs. 1,2). The spatial extent of Voyager flashes was estimated to be about 30 kilometres (half-width at half-maximum intensity, HWHM), but the camera was unlikely to have detected the dim outer edges of the flashes, given its weak response to the brightest spectral line of Jovian lightning emission, the 656.3-nanometre Hα line of atomic hydrogen1,3-6. The spatial resolution of some cameras allowed investigators to confirm 22 flashes with HWHM greater than 42 kilometres, and to estimate one with an HWHM of 37 to 45 kilometres (refs. 1,7-9). These flashes, with optical energies comparable to terrestrial 'superbolts'-of (0.02-1.6) × 1010 joules-have been interpreted as tracers of moist convection originating near the 5-bar level of Jupiter's atmosphere (assuming photon scattering from points beneath the clouds)1-3,7,8,10-12. Previous observations of lightning have been limited by camera sensitivity, distance from Jupiter and long exposures (about 680 milliseconds to 85 seconds), meaning that some measurements were probably superimposed flashes reported as one1,2,7,9,10,13. Here we report optical observations of lightning flashes by the Juno spacecraft with energies of approximately 105-108 joules, flash durations as short as 5.4 milliseconds and inter-flash separations of tens of milliseconds, with typical terrestrial energies. The flash rate is about 6.1 × 10-2 flashes per square kilometre per year, more than an order of magnitude greater than hitherto seen. Several flashes are of such small spatial extent that they must originate above the 2-bar level, where there is no liquid water14,15. This implies that multiple mechanisms for generating lightning on Jupiter need to be considered for a full understanding of the planet's atmospheric convection and composition.

2.
Proc Natl Acad Sci U S A ; 119(17): e2120486119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35442776

RESUMEN

Vortex crystals are quasiregular arrays of like-signed vortices in solid-body rotation embedded within a uniform background of weaker vorticity. Vortex crystals are observed at the poles of Jupiter and in laboratory experiments with magnetized electron plasmas in axisymmetric geometries. We show that vortex crystals form from the free evolution of randomly excited two-dimensional turbulence on an idealized polar cap. Once formed, the crystals are long lived and survive until the end of the simulations (300 crystal-rotation periods). We identify a fundamental length scale, Lγ=(U/γ)1/3, characterizing the size of the crystal in terms of the mean-square velocity U of the fluid and the polar parameter γ=fp/a2p, with fp the Coriolis parameter at the pole and ap the polar radius of the planet.

3.
Proc Natl Acad Sci U S A ; 117(39): 24082-24087, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32900956

RESUMEN

From its pole-to-pole orbit, the Juno spacecraft discovered arrays of cyclonic vortices in polygonal patterns around the poles of Jupiter. In the north, there are eight vortices around a central vortex, and in the south there are five. The patterns and the individual vortices that define them have been stable since August 2016. The azimuthal velocity profile vs. radius has been measured, but vertical structure is unknown. Here, we ask, what repulsive mechanism prevents the vortices from merging, given that cyclones drift poleward in atmospheres of rotating planets like Earth? What atmospheric properties distinguish Jupiter from Saturn, which has only one cyclone at each pole? We model the vortices using the shallow water equations, which describe a single layer of fluid that moves horizontally and has a free surface that moves up and down in response to fluid convergence and divergence. We find that the stability of the pattern depends mostly on shielding-an anticyclonic ring around each cyclone, but also on the depth. Too little shielding and small depth lead to merging and loss of the polygonal pattern. Too much shielding causes the cyclonic and anticyclonic parts of the vortices to fly apart. The stable polygons exist in between. Why Jupiter's vortices occupy this middle range is unknown. The budget-how the vortices appear and disappear-is also unknown, since no changes, except for an intruder that visited the south pole briefly, have occurred at either pole since Juno arrived at Jupiter in 2016.

4.
Geophys Res Lett ; 48(23): e2021GL095756, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-35027778

RESUMEN

Cloud-tracked wind observations document the role of eddies in putting momentum into the zonal jets. Chemical tracers, lightning, clouds, and temperature anomalies document the rising and sinking in the belts and zones, but questions remain about what drives the flow between the belts and zones. We suggest an additional role for the eddies, which is to generate waves that propagate both up and down from the cloud layer. When the waves break they deposit momentum and thereby replace the friction forces at solid boundaries that enable overturning circulations on terrestrial planets. By depositing momentum of one sign within the cloud layer and momentum of the opposite sign above and below the clouds, the eddies maintain all components of the circulation, including the stacked, oppositely rotating cells between each belt-zone pair, and the zonal jets themselves.

5.
Geophys Res Lett ; 44(15): 7676-7685, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-33100420

RESUMEN

The latitude-altitude map of ammonia mixing ratio shows an ammonia-rich zone at 0-5°N, with mixing ratios of 320-340 ppm, extending from 40-60 bars up to the ammonia cloud base at 0.7 bars. Ammonia-poor air occupies a belt from 5-20°N. We argue that downdrafts as well as updrafts are needed in the 0-5°N zone to balance the upward ammonia flux. Outside the 0-20°N region, the belt-zone signature is weaker. At latitudes out to ±40°, there is an ammonia-rich layer from cloud base down to 2 bars which we argue is caused by falling precipitation. Below, there is an ammonia-poor layer with a minimum at 6 bars. Unanswered questions include how the ammonia-poor layer is maintained, why the belt-zone structure is barely evident in the ammonia distribution outside 0-20°N, and how the internal heat is transported through the ammonia-poor layer to the ammonia cloud base.

6.
Nature ; 434(7030): 159-68, 2005 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15758990

RESUMEN

Titan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titan's nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues. The images reveal intricate surface albedo features that suggest aeolian, tectonic and fluvial processes; they also show a few circular features that could be impact structures. These observations imply that substantial surface modification has occurred over Titan's history. We have not directly detected liquids on the surface to date. Convective clouds are found to be common near the south pole, and the motion of mid-latitude clouds consistently indicates eastward winds, from which we infer that the troposphere is rotating faster than the surface. A detached haze at an altitude of 500 km is 150-200 km higher than that observed by Voyager, and more tenuous haze layers are also resolved.

7.
Space Sci Rev ; 216: 122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35027776

RESUMEN

Before Cassini, scientists viewed Saturn's unique features only from Earth and from three spacecraft flying by. During more than a decade orbiting the gas giant, Cassini studied the planet from its interior to the top of the atmosphere. It observed the changing seasons, provided up-close observations of Saturn's exotic storms and jet streams, and heard Saturn's lightning, which cannot be detected from Earth. During the Grand Finale orbits, it dove through the gap between the planet and its rings and gathered valuable data on Saturn's interior structure and rotation. Key discoveries and events include: watching the eruption of a planet-encircling storm, which is a 20- or 30-year event, detection of gravity perturbations from winds 9000 km below the tops of the clouds, demonstration that eddies are supplying energy to the zonal jets, which are remarkably steady over the 25-year interval since the Voyager encounters, re-discovery of the north polar hexagon after 25 years, determination of elemental abundance ratios He/H, C/H, N/H, P/H, and As/H, which are clues to planet formation and evolution, characterization of the semiannual oscillation of the equatorial stratosphere, documentation of the mysteriously high temperatures of the thermosphere outside the auroral zone, and seeing the strange intermittency of lightning, which typically ceases to exist on the planet between outbursts every 1-2 years. These results and results from the Jupiter flyby are all discussed in this review.

8.
J Geophys Res Planets ; 125(7): e2019JE006369, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32728504

RESUMEN

In the first 20 orbits of the Juno spacecraft around Jupiter, we have identified a variety of wave-like features in images made by its public-outreach camera, JunoCam. Because of Juno's unprecedented and repeated proximity to Jupiter's cloud tops during its close approaches, JunoCam has detected more wave structures than any previous surveys. Most of the waves appear in long wave packets, oriented east-west and populated by narrow wave crests. Spacing between crests were measured as small as ~30 km, shorter than any previously measured. Some waves are associated with atmospheric features, but others are not ostensibly associated with any visible cloud phenomena and thus may be generated by dynamical forcing below the visible cloud tops. Some waves also appear to be converging, and others appear to be overlapping, possibly at different atmospheric levels. Another type of wave has a series of fronts that appear to be radiating outward from the center of a cyclone. Most of these waves appear within 5° of latitude from the equator, but we have detected waves covering planetocentric latitudes between 20°S and 45°N. The great majority of the waves appear in regions associated with prograde motions of the mean zonal flow. Juno was unable to measure the velocity of wave features to diagnose the wave types due to its close and rapid flybys. However, both by our own upper limits on wave motions and by analogy with previous measurements, we expect that the waves JunoCam detected near the equator are inertia-gravity waves.

10.
Nat Commun ; 8: 14367, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117324

RESUMEN

The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

11.
J Geophys Res Planets ; 121(9): 1814-1826, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29629249

RESUMEN

We use observations from the Imaging Science Subsystem on Cassini to create maps of Saturn's Northern Hemisphere (NH) from 2008 to 2015, a time period including a seasonal transition (i.e., Spring Equinox in 2009) and the 2010 giant storm. The processed maps are used to investigate vortices in the NH during the period of 2008-2015. All recorded vortices have diameters (east-west) smaller than 6000 km except for the largest vortex that developed from the 2010 giant storm. The largest vortex decreased its diameter from ~11000 km in 2011 to ~5000 km in 2015, and its average diameter is ~6500 km during the period of 2011-2015. The largest vortex lasts at least 4 years, which is much longer than the lifetimes of most vortices (less than 1 year). The largest vortex drifts to north, which can be explained by the beta drift effect. The number of vortices displays varying behaviors in the meridional direction, in which the 2010 giant storm significantly affects the generation and development of vortices in the middle latitudes (25-45°N). In the higher latitudes (45-90°N), the number of vortices also displays strong temporal variations. The solar flux and the internal heat do not directly contribute to the vortex activities, leaving the temporal variations of vortices in the higher latitudes (45-90°N) unexplained.

12.
Sci Rep ; 3: 2410, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23934437

RESUMEN

Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (~29.5 Earth years), from the Voyager encounters (1980-81) to the new Cassini reconnaissance (2009-10). The combined observations reveal a strong temporal increase of tropic temperature (~10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (~a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time.


Asunto(s)
Imágenes Satelitales/métodos , Saturno , Estaciones del Año , Nave Espacial , Tiempo (Meteorología)
13.
Science ; 327(5972): 1476-9, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20299587

RESUMEN

The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere?


Asunto(s)
Saturno , Atmósfera , Hidrocarburos , Luz , Magnetismo , Nitrógeno , Oxígeno , Protones , Nave Espacial , Temperatura , Tritio , Viento
14.
Science ; 319(5871): 1801, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18369142

RESUMEN

The camera onboard the Cassini spacecraft has allowed us to observe many of Saturn's cloud features. We present observations of Saturn's south polar vortex (SPV) showing that it shares some properties with terrestrial hurricanes: cyclonic circulation, warm central region (the eye) surrounded by a ring of high clouds (the eye wall), and convective clouds outside the eye. The polar location and the absence of an ocean are major differences. It also shares properties with the polar vortices on Venus, such as polar location, cyclonic circulation, warm center, and long lifetime, but the Venus vortices have cold collars and are not associated with convective clouds. The SPV's combination of properties is unique among vortices in the solar system.

15.
Science ; 299(5609): 1051-3, 2003 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-12586939

RESUMEN

In their pioneering work, Leighton and Murray argued that the Mars atmosphere, which at present is 95% carbon dioxide, is controlled by vapor equilibrium with a much larger polar reservoir of solid carbon dioxide. Here we argue that the polar reservoir is small and cannot function as a long-term buffer to the more massive atmosphere. Our work is based on modeling of the circular depressions commonly found on the south polar cap. We argue that a carbon dioxide ice layer about 8 meters thick is being etched away to reveal water ice underneath. This is consistent with thermal infrared data from the Mars Odyssey mission.


Asunto(s)
Hielo Seco , Hielo , Marte , Modelos Teóricos , Atmósfera , Dióxido de Carbono , Estaciones del Año , Temperatura , Agua
16.
Science ; 299(5612): 1541-7, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12624258

RESUMEN

The Cassini Imaging Science Subsystem acquired about 26,000 images of the Jupiter system as the spacecraft encountered the giant planet en route to Saturn. We report findings on Jupiter's zonal winds, convective storms, low-latitude upper troposphere, polar stratosphere, and northern aurora. We also describe previously unseen emissions arising from Io and Europa in eclipse, a giant volcanic plume over Io's north pole, disk-resolved images of the satellite Himalia, circumstantial evidence for a causal relation between the satellites Metis and Adrastea and the main jovian ring, and information on the nature of the ring particles.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda